touch信号数据集/论文合集(更新中)

这篇博客汇总了四篇关于触觉和视觉数据集的研究论文,涉及人类抓握签名学习、机器人多模态物体识别、地形分类以及表面材料的深度学习分类。通过深度学习和多模态数据,研究如何利用触觉和视觉信息进行物体识别、重量估算和地形理解,推动机器人感知和人机交互的发展。
摘要由CSDN通过智能技术生成


做相关任务的朋友可以交流交流吗~抱团取暖!-!

1.《Learning the signatures of the human grasp using a scalable tactile glove》

Source:Nature 【2019】
Data type:32*32阵列 图像;(元数据结构)
Data: 可联系通讯作者索取数据集,也可私信我
Abstract: 人类能够感知、称重和抓取不同的物体,并在施加适当的力的同时推断出它们的材料属性——这对现代机器人来说是一项具有挑战性的任务。机械感受器网络提供感官反馈并使人类的抓取变得灵活,但这种网络仍然很难在机器人身上复制。而computer-vision-based机器人抓住strategies3-5发展大大丰富的视觉数据和新兴机器学习工具,也还没有等价的传感平台和大规模数据集的探测器的使用时,人类依靠触觉信息把握对象。研究人类如何抓取物体的机制将补充基于视觉的机器人物体处理。重要的是,目前无法记录和分析触觉信号限制了我们对触觉信息在人类认知本身中的作用的理解——例如,如何用触觉图来识别物体并推断它们的属性是未知的。在这里,我们使用一个可伸缩的触觉手套和深度卷积神经网络来表明,均匀分布在手上的传感器可以用来识别单个物体,估计它们的重量,并探索抓取物体时出现的典型触觉模式。该传感器阵列(548个传感器)组装在一个针织手套上,由压阻膜组成,压阻膜由被动探测的导电螺纹电极网络连接。使用一种低成

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chong墩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值