touch信号数据集/论文合集(更新中)
-
-
-
- 1.《Learning the signatures of the human grasp using a scalable tactile glove》
- 2.《AU Dataset for Visuo-Haptic Object Recognition for Robots》
- 3. 《What am I touching? Learning to classify terrain via haptic sensing》
- 4.《Deep Learning for Surface Material Classification Using Haptic and Visual Information》
-
-
做相关任务的朋友可以交流交流吗~抱团取暖!-!
1.《Learning the signatures of the human grasp using a scalable tactile glove》
Source:Nature 【2019】
Data type:32*32阵列 图像;(元数据结构)
Data: 可联系通讯作者索取数据集,也可私信我
Abstract: 人类能够感知、称重和抓取不同的物体,并在施加适当的力的同时推断出它们的材料属性——这对现代机器人来说是一项具有挑战性的任务。机械感受器网络提供感官反馈并使人类的抓取变得灵活,但这种网络仍然很难在机器人身上复制。而computer-vision-based机器人抓住strategies3-5发展大大丰富的视觉数据和新兴机器学习工具,也还没有等价的传感平台和大规模数据集的探测器的使用时,人类依靠触觉信息把握对象。研究人类如何抓取物体的机制将补充基于视觉的机器人物体处理。重要的是,目前无法记录和分析触觉信号限制了我们对触觉信息在人类认知本身中的作用的理解——例如,如何用触觉图来识别物体并推断它们的属性是未知的。在这里,我们使用一个可伸缩的触觉手套和深度卷积神经网络来表明,均匀分布在手上的传感器可以用来识别单个物体,估计它们的重量,并探索抓取物体时出现的典型触觉模式。该传感器阵列(548个传感器)组装在一个针织手套上,由压阻膜组成,压阻膜由被动探测的导电螺纹电极网络连接。使用一种低成