前缀(波兰)、中缀(逆波兰)、后缀表达式都是对表达式的记法。它们之间的区别在于运算符相对于操作数的位置
不同:前缀表达式的运算符位于与其相关的操作数之前;中缀和后缀同理。
- 举例:
(3 + 4) × 5 - 6 中缀表达式
× + 3 4 5 6 前缀表达式
3 4 + 5 × 6 - 后缀表达式
中缀表达式(中缀记法)
中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。
前缀表达式(前缀记法、波兰式)
前缀表达式的运算符位于操作数之前。
- 前缀表达式的计算机求值:
从右至左
扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶数字元素 操作符 次顶数字元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。
例如前缀表达式“- × + 3 4 5 6”:
(1) 从右至左
扫描,将6、5、4、3压入堆栈;
(2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈;
(4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
可以看出,用计算机计算前缀表达式的值是很容易的。
-
将中缀表达式转换为前缀表达式:
遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2)从右至左
扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的较高或相等
,也将运算符压入S1;
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是右括号“)”,则直接压入S1;
(5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最左边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:
扫描到的元素 | S2中间栈(栈低->栈顶) | S1运算符栈(栈低->栈顶) | 说明 |
---|---|---|---|
5 | 5 | 空 | 数字直接入栈 |
- | 5 | - | S1为空,运算符直接入栈 |
) | 5 | -) | 右括号直接入栈 |
4 | 54 | -) | 数字直接入栈 |
× | 54 | -)× | S1栈顶是右括号,直接入栈 |
) | 54 | -)×) | 右括号直接入栈 |
3 | 543 | -)×) | 数字直接入栈 |
+ | 543 | -)×)+ | S1栈顶是右括号,直接入栈 |
2 | 5432 | -)×)+ | 数字直接入栈 |
( | 5432+ | -)× | 左括号,弹出运算符直至遇到右括号 |
( | 5432+× | - | 同上 |
+ | 5432+× | -+ | 优先级与-相同入栈 |
1 | 5432+×1 | -+ | 数字,入栈 |
到达最左端 | 5432+×1+ - | 空 | S1剩余元素出栈,入S2 |
因此结果为“- + 1 × + 2 3 4 5”。
后缀表达式(后缀记法、逆波兰式)
后缀表达式与前缀表达式类似,只是运算符位于操作数之后。
- 后缀表达式的计算机求值:
与前缀表达式类似,只是顺序是从左至右
:从左至右
扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 操作符 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“3 4 + 5 × 6 -”:
(1) 从左至右扫描,将3和4压入堆栈;
(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较
),计算出3+4的值,得7,再将7入栈;
(3) 将5入栈;
(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
(5) 将6入栈;
(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
-
将中缀表达式转换为后缀表达式:
与转换为前缀表达式相似,遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右
扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的高
,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是左括号“(”,则直接压入S1;
(5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8)依次弹出S2中的元素并输出
,结果的逆序
即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:
扫描到的元素 | S2中间栈(栈低->栈顶) | S1运算符栈(栈低->栈顶) | 说明 |
---|---|---|---|
1 | 1 | 空 | 数字,直接入栈 |
+ | 1 | + | S1为空,运算符直接入栈 |
( | 1 | +( | 左括号,直接入栈 |
( | 1 | +(( | 同上 |
2 | 12 | +(( | 数字,直接入栈 |
+ | 12 | +((+ | S1栈顶为左括号,运算符直接入栈 |
3 | 123 | +((+ | 数字,直接入栈 |
) | 123+ | +( | 右括号,弹出运算符直至遇到左括号 |
× | 123+ | +(× | S1栈顶为左括号,直接入栈 |
4 | 123+4 | +(× | 数字,直接入栈 |
) | 123+4× | + | 右括号,弹出运算符直至遇到左括号 |
- | 123+4×+ | - | -与+优先级相同,弹出+S1为空压入- |
5 | 123+4×+5 | - | 数字,直接入栈 |
到达最右端 | 123+4×+5- | 空 | S1剩余运算符出栈,入S2 |
因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出
)。