前缀、中缀、后缀表达式

​ 前缀(波兰)、中缀(逆波兰)、后缀表达式都是对表达式的记法。它们之间的区别在于运算符相对于操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前;中缀和后缀同理。

  • 举例:
    (3 + 4) × 5 - 6 中缀表达式
    × + 3 4 5 6 前缀表达式
    3 4 + 5 × 6 - 后缀表达式
中缀表达式(中缀记法)

​ 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。

前缀表达式(前缀记法、波兰式)

前缀表达式的运算符位于操作数之前。

  • 前缀表达式的计算机求值:

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶数字元素 操作符 次顶数字元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。

​ 例如前缀表达式“- × + 3 4 5 6”:

​ (1) 从右至左扫描,将6、5、4、3压入堆栈;
​ (2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈;
​ (3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈;
​ (4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
​ 可以看出,用计算机计算前缀表达式的值是很容易的。

  • 将中缀表达式转换为前缀表达式:

    遵循以下步骤:

    (1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
    (2) 从右至左扫描中缀表达式;
    (3) 遇到操作数时,将其压入S2;
    (4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
    (4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
    (4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
    (4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
    (5) 遇到括号时:
    (5-1) 如果是右括号“)”,则直接压入S1;
    (5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
    (6) 重复步骤(2)至(5),直到表达式的最左边;
    (7) 将S1中剩余的运算符依次弹出并压入S2;
    (8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。

    例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:

扫描到的元素S2中间栈(栈低->栈顶)S1运算符栈(栈低->栈顶)说明
55数字直接入栈
-5-S1为空,运算符直接入栈
)5-)右括号直接入栈
454-)数字直接入栈
×54-)×S1栈顶是右括号,直接入栈
)54-)×)右括号直接入栈
3543-)×)数字直接入栈
+543-)×)+S1栈顶是右括号,直接入栈
25432-)×)+数字直接入栈
(5432+-)×左括号,弹出运算符直至遇到右括号
(5432+×-同上
+5432+×-+优先级与-相同入栈
15432+×1-+数字,入栈
到达最左端5432+×1+ -S1剩余元素出栈,入S2

​ 因此结果为“- + 1 × + 2 3 4 5”。

后缀表达式(后缀记法、逆波兰式)

后缀表达式与前缀表达式类似,只是运算符位于操作数之后。

  • 后缀表达式的计算机求值:

​ 与前缀表达式类似,只是顺序是从左至右从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 操作符 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。

​ 例如后缀表达式“3 4 + 5 × 6 -”:

​ (1) 从左至右扫描,将3和4压入堆栈;
​ (2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较),计算出3+4的值,得7,再将7入栈;
​ (3) 将5入栈;
​ (4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
​ (5) 将6入栈;
​ (6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。

  • 将中缀表达式转换为后缀表达式:

    与转换为前缀表达式相似,遵循以下步骤:
    (1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
    (2) 从左至右扫描中缀表达式;
    (3) 遇到操作数时,将其压入S2;
    (4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
    (4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
    (4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
    (4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
    (5) 遇到括号时:
    (5-1) 如果是左括号“(”,则直接压入S1;
    (5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
    (6) 重复步骤(2)至(5),直到表达式的最右边;
    (7) 将S1中剩余的运算符依次弹出并压入S2;
    (8) 依次弹出S2中的元素并输出结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。

    例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:

扫描到的元素S2中间栈(栈低->栈顶)S1运算符栈(栈低->栈顶)说明
11数字,直接入栈
+1+S1为空,运算符直接入栈
(1+(左括号,直接入栈
(1+((同上
212+((数字,直接入栈
+12+((+S1栈顶为左括号,运算符直接入栈
3123+((+数字,直接入栈
)123++(右括号,弹出运算符直至遇到左括号
×123++(×S1栈顶为左括号,直接入栈
4123+4+(×数字,直接入栈
)123+4×+右括号,弹出运算符直至遇到左括号
-123+4×+--与+优先级相同,弹出+S1为空压入-
5123+4×+5-数字,直接入栈
到达最右端123+4×+5-S1剩余运算符出栈,入S2

​ 因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值