爬楼梯问题

爬楼梯问题

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems

问题1:爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        //我们是从第 0 级开始爬的,所以从第 0 级爬到第 0 级我们可以看作只有一种方案,即 f(0)=1;从第 0 级到第 1 级也只有一种方案,即爬一级,f(1)=1。
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i <= n; i++) {
        	//爬上 n-1n−1 阶楼梯的方法数量。因为再爬1阶就能到第n阶
			//爬上 n-2n−2 阶楼梯的方法数量,因为再爬2阶就能到第n阶
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}
//优化:由于这里的 f(x) 只和 f(x−1) 与 f(x−2) 有关,所以我们可以用「滚动数组思想」把空间复杂度优化成 O(1)
class Solution {
        public int climbStairs(int n) {
            int p = 0, q = 0, r = 1;
            for (int i = 1; i <= n; ++i) {
                p = q;
                q = r;
                r = p + q;
            }
            return r;
        }
    }

问题2:使用最小花费爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] dp = new int[n + 1];
        //由于可以选择下标 0 或 1 作为初始阶梯,因此有 dp[0]=dp[1]=0。
        dp[0] = dp[1] = 0;
        for (int i = 2; i <= n; i++) {
        	//可以从下标 i−1 使用 cost[i−1] 的花费达到下标 i,或者从下标 i−2 使用 cost[i−2] 的花费达到下标 ii。为了使总花费最小,dp[i] 应取上述两项的最小值
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}
//优化:上述代码的时间复杂度和空间复杂度都是 O(n)。注意到当 i≥2 时,dp[i] 只和dp[i−1] 与 dp[i−2] 有关,因此可以使用滚动数组的思想,将空间复杂度优化到 O(1)。
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int prev = 0, curr = 0;
        for (int i = 2; i <= n; i++) {
            int next = Math.min(curr + cost[i - 1], prev + cost[i - 2]);
            prev = curr;
            curr = next;
        }
        return curr;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值