GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation in Federated Learning 读后总结

本文介绍了GTG-Shapley方法,它解决了联邦学习中Shapley值计算成本高的问题。通过梯度计算减少计算量,以及设计了一种引导的抽样策略,降低排列组合数,该方法提高了评估参与者贡献的效率和准确性。文章详细阐述了主要方法、相关工作、基本概念和提出的算法,特别强调了引导抽样在确保参与者公平机会和计算收敛性方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容:
目标:对用户的贡献进行评估,主要是为了激励机制打基础,根据用户的贡献,发放对应的奖励。
问题:Shapley值计算成本巨大,难以应用。
想了解shapley推荐学习一下这篇文章,讲的很好,很好理解 添加链接描述
这篇文章解决思路:
1)通过梯度计算Shapley减少计算量,不用重新训练数据
2)设计了一种截断的抽样方法,减少排列组合数(我的理解),基于Monte-Carlo estimation的基础上进行

Introduction 部分主要介绍了一下背景和SV(Shapley Value)
---- 这个地方展现出了本文的贡献了
1、主要方法1:通过梯度聚合减少计算
2、主要方法2:减少排列组合数,过去是随机抽样,本文是有重点的基于单轮特征的抽样 Monte Carlo sampling technique基础上进一步改进

具体方法:1、注意抽样时,抽样排列组合中节点的位置,如果抽到的组合中节点的位置总是考后的,这样计算出来的贡献会较少。(实验证明后加入的节点往往贡献较低)

Related Work
这个我觉得挺好,记录下来。
现有的FL学习贡献评估方法,大致分为:1)自我报告 2)个人表现 3)utility game 4)基于Shapley Value 的方法
接下来就是就这四个方法分别进行介绍
因为我主要关注的是他

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值