一、前言
在人工智能技术快速发展的背景下,大语言模型(LLM)已广泛应用于智能交互、内容生成、决策支持等领域,在商业方案撰写、代码解析、医疗咨询等场景中展现出强大的能力。然而,LLM 的实际应用效果高度依赖于上下文信息的完整性与准确性。
例如,当使用 LLM 优化营销方案时,若缺乏用户画像、历史数据、市场趋势等关键信息,模型输出内容将难以贴合实际需求,缺乏落地价值。
传统数据交互模式存在明显局限,信息传递分散且缺乏系统性,难以有效整合为 LLM 可直接利用的结构化语境。
MCP(Model Context Protocol)协议作为新兴标准,通过建立统一规范,将零散信息转化为模型可理解的上下文数据,显著提升了信息处理效率与准确性。它不仅革新了 LLM 获取和处理上下文的方式,更推动模型与数据间的交互从模糊的信息传递,迈向精确、高效的协同。
从学术研究到商业实践,MCP 协议正重塑 AI 领域的交互逻辑,成为推动大模型应用落地的重要技术力量。所以今天咱们一起来聊聊MCP。
二、MCP诞生的时代背景
2.1传统模式下大语言模型应用的困境
在MCP(Multi-source Contextual Prompting,多源上下文提示)技术问世之前,使用大语言模型(LLM)解决问题通常需要经历一个繁琐且容易出错的人工信息处理流程。
研究人员首先需要从多个异构数据源中收集相关信息,这些数据源可能包括结构化数据库(如MySQL、PostgreSQL)、非结构化文件系统(如PDF文档、Word文件)以及网络资源(如学术论文、行业报告)。
然后,他们需要对这些信息进行筛选、清洗和整合,最终将处理后的数据作为提示词(prompt)输入大语言模型。
这种方法在处理简单任务时或许能够胜任,例如回答单一领域的基础问题或生成简单的文本内容。然而,当面对复杂的跨领域问题时,其局限性便暴露无遗。以涉及医疗、金融和法律等多个领域的综合性项目为例,研究人员需要从以下多个维度进行信息处理:
-
数据收集阶段:
- 医疗领域:需要从PubMed、ClinicalTrials.gov等数据库中获取最新的医学研究成果和临床试验数据
- 金融领域:需要从Bloomberg、Reuters等金融数据平台收集市场动态和投资分析报告
- 法律领域:需要从Westlaw、LexisNexis等法律数据库中检索相关法规和判例
-
信息筛选与整合:
- 研究人员需要根据项目需求,从海量信息中筛选出相关度最高的内容
- 需要将不同领域的信息进行交叉验证和整合,确保数据的一致性和准确性
- 需要处理不同数据格式的转换问题,如将表格数据转换为文本描述,或将法律条文转化为可理解的业务语言
-
提示词构建:
- 需要将整合后的信息转化为适合大语言模型理解的提示词格式
- 需要确保提示词中包含足够的上下文信息,以引导模型生成准确的回答
- 需要处理提示词长度限制问题,在信息完整性和模型输入限制之间找到平衡
这一过程不仅耗时费力,而且由于人工操作的复杂性,极易出现以下问题:
- 信息遗漏:可能忽略某些关键数据源或重要信息
- 信息错误:在数据转换和整合过程中可能出现理解偏差或技术错误
- 效率低下:处理跨领域问题时,可能需要数天甚至数周的时间才能完成信息收集和整合
- 一致性差:不同研究人员可能对相同信息有不同的理解和处理方式,导致结果不一致
这些问题最终都会影响大语言模型的输出质量,可能导致生成的回答不准确、不完整或缺乏专业性。特别是在医疗、金融等对准确性要求极高的领域,这种人工处理方式的风险尤为突出。
例如,在医疗诊断辅助场景中,如果遗漏了最新的临床研究数据,可能导致模型给出过时或不恰当的治疗建议;在金融风险评估中,如果未能及时整合最新的市场数据,可能导致模型做出错误的投资预测。
因此,在MCP技术出现之前,使用大语言模型处理复杂跨领域问题面临着巨大的挑战,亟需一种能够自动化处理多源信息、提高信息整合效率和准确性的解决方案。
2.2函数调用功能的引入及其局限性
在人工智能领域,为了提高大语言模型(LLM)的自动化程度和处理效率,函数调用(function call)功能成为众多 LLM 平台的核心技术之一。
其中,DeepSeek 作为国内领先的大模型平台,同样具备高效的函数调用能力。它允许模型在运行过程中,根据语义理解自动触发预定义函数,实现数据获取、逻辑计算等操作,将 LLM 的文本生成能力与外部工具的执行能力深度融合,极大拓展了模型的应用边界。
以天气查询场景为例,当用户向 DeepSeek 提问 “今天北京的天气如何?”,模型会基于内置的语义识别算法,快速判断这是天气查询需求,并自动调用预配置的天气 API 函数。
import requests
import json
# DeepSeek API请求配置
DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions"
API_KEY = "your_api_key_here"
# 定义天气查询函数
def get_weather(city: str) -> dict:
"""调用外部天气API获取指定城市的天气信息"""
weather_api_url = f"https://api.weather.com/v1/current?city={city}"
response = requests.get(weather_api_url)
if response.status_code == 200:
return response.json()
return {"error": f"Failed to get weather for {city}"}
# 预定义函数列表(向DeepSeek注册)
functions = [
{
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "城市名称,如北京、上海"}
},
"required": ["city"]
},
"description": "获取指定城市的当前天气信息"
}
]
# 构造用户查询和API请求
user_query = "今天北京的天气如何?"
payload = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": user_query}],
"functions": functions,
"function_call": "auto" # 允许模型自动调用函数
}
# 发送请求到DeepSeek API
response = requests.post(
DEEPSEEK_API_URL,
headers={"Authorization": f"Bearer {API_KEY}"},
json=payload
)
# 解析模型响应
response_data = response.json()
if "function_call" in response_data["choices"][0]["message"]:
# 模型决定调用函数
function_call = response_data["choices"][0]["message"]["function_call"]
function_name = function_call["name"]
parameters = function_call["parameters"]
# 执行函数调用
if function_name == "get_weather":
weather_data = get_weather(parameters["city"])
# 将函数执行结果回传给模型
second_payload = {
"model": "deepseek-chat",
"messages": [
{"role": "user", "content": user_query},
response_data["choices"][0]["message"],
{
"role": "function",
"name": function_name,
"content": json.dumps(weather_data)
}
]
}
# 获取最终回答
final_response = requests.post(
DEEPSEEK_API_URL,
headers={"Authorization": f"Bearer {API_KEY}"},
json=second_payload
)
print(final_response.json()["choices"][0]["message"]["content"])
# 输出示例:今天北京晴,气温在15到25摄氏度之间,风力3级
这种自动化交互模式不仅提升了任务处理效率,还通过系统闭环执行降低了人为干预导致的错误率。
然而,当前 LLM 函数调用技术仍存在行业共性挑战。从 API 标准来看,不同平台差异显著:OpenAI 的 GPT 模型采用 function calling 机制,Google 的 Bard 以 tool use 实现调用,而 DeepSeek 的函数调用接口在参数传递、响应格式上也有独特设计。
如果我们需要基于 GPT 设计的天气查询函数,需根据 DeepSeek 的 API 规范(如请求体结构、认证方式)进行重构,才能适配其调用逻辑,这无疑增加了跨平台开发成本。
其次,函数调用在安全性和交互性方面也存在一定的问题。在安全性方面,函数调用可能会导致数据泄露的风险。如果模型在调用外部API时未对用户输入进行充分的验证和过滤,恶意用户可能会通过构造特殊的输入来获取敏感信息或执行未经授权的操作。
在交互性方面,函数调用通常只能处理相对简单的任务,无法满足一些复杂的交互需求。例如,如果用户需要在一个对话中完成多步操作(如预订酒店、查询航班、安排行程等),单纯的函数调用可能无法提供足够的灵活性和上下文理解能力。
2.3Agent开发的痛点
随着人工智能技术的快速发展,Agent(智能体)的应用场景已经从最初的简单对话系统(Chatbot)扩展到如今能够自主感知环境、制定决策并执行复杂任务的智能体。在医疗、金融、教育、智能制造等多个领域,Agent正在发挥越来越重要的作用。
例如,在医疗领域,Agent可以协助医生进行疾病诊断;在金融领域,Agent能够进行智能投顾和风险评估;在智能制造中,Agent可以优化生产流程并实现预测性维护。
然而,在Agent的开发过程中,开发者面临着诸多挑战,其中最为突出的问题是缺乏标准化的上下文和工具集。在传统的Agent开发模式下,工具开发者需要深入了解Agent的内部架构、数据处理流程和决策机制,并在Agent层直接编写工具代码。这种开发方式存在以下主要问题:
-
开发复杂度高:工具开发者需要掌握Agent的底层实现细节,包括状态管理、决策逻辑、通信机制等,这大大增加了学习曲线和开发难度。
-
维护成本高:当Agent的内部实现发生变化时,例如算法更新、架构调整或接口变更,工具开发者需要同步修改工具代码,这增加了维护成本和工作量。
-
工具复用性差:由于工具的实现与特定Agent应用代码紧密耦合,即使通过API实现了适配层,不同工具在输入输出参数、调用方式等方面仍存在差异,导致工具难以在不同Agent之间复用。
-
生态互操作性差:不同Agent生态中的工具由于缺乏统一的标准和规范,在接口定义、数据格式、通信协议等方面存在差异,导致工具无法跨平台使用,限制了Agent的协同能力和应用范围。
目前工具提供方能提供的只有 OpenAPI,但由于缺乏标准使得不同 Agent 生态中的工具 Tool 互不兼容。
并且function call 也有其局限性, function call 平台依赖性强,不同 LLM 平台的 function call API 实现差异较大。
三、MCP的定义与核心作用
MCP(Model Context Protocol),即模型上下文协议,是Anthropic公司(Claude的母公司)在2024年提出的一项创新性协议标准。该协议于2024年11月25日首次在Anthropic发布的技术白皮书中正式亮相,旨在解决AI模型与应用程序之间上下文信息交换的标准化问题。尤其是在多模态数据处理、跨平台集成和实时交互等场景中,传统的上下文信息传递方式已无法满足需求。
MCP的核心目标是定义一种统一的接口规范,使得各种数据源、工具和功能能够以一致的方式连接到AI模型,从而为模型提供更加丰富、准确和动态的上下文信息,让AI 应用程序的开发和集成变得更加简单和统一。
MCP 使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。
可以看出,MCP 就是以更标准的方式让 LLM Chat 使用不同工具,通过一张简单的可视化咱们应该更容易理解“中间协议层”的概念了。Anthropic 旨在实现 LLM Tool Call(LLM 工具调用)的标准。
Anthropic正是基于这样的痛点设计了 MCP,充当 AI 模型的"万能转接头",让 LLM 能轻松得获取数据或者调用工具。一句话解释就是 MCP 提供给 LLM 所需的上下文:Resources 资源、Prompts 提示词、Tools 工具。
具体而言,MCP协议包含以下几个关键特性:
- 标准化数据格式:定义了统一的上下文信息描述语言(Context Description Language, CDL),支持文本、图像、音频等多种数据类型;
- 动态上下文更新:支持实时上下文信息的更新和同步,确保模型始终基于最新信息进行推理;
- 模块化设计:采用插件式架构,允许开发者根据具体需求灵活扩展功能;
- 安全与隐私保护:内置数据加密和访问控制机制,确保上下文信息的安全传输和使用。
Anthropic公司表示,MCP协议将作为开源项目发布,并计划与主要AI平台和云服务提供商合作,推动其成为行业标准。这一协议的推出,也标志着AI系统与应用程序之间的交互方式迈入了一个新的阶段,为构建更加智能、灵活和可靠的AI应用奠定了基础。
四、MCP的优势
丰富的生态系统
MCP(Model Collaboration Platform)构建了一个多元化的插件生态系统,为开发者提供了超过200种开箱即用的插件,涵盖自然语言处理、计算机视觉、数据分析和自动化等多个领域。
例如,在数据查询方面,MCP提供了SQL查询插件、NoSQL连接器等工具;在文本生成领域,支持Markdown格式化、多语言翻译、文本摘要等功能;图像识别模块则包含OCR文字识别、物体检测、图像分类等能力。
开发者只需通过简单的API调用即可将这些功能集成到自己的AI应用中,无需投入大量时间和资源进行底层开发。这种模块化设计不仅缩短了开发周期,还降低了技术门槛,让开发者能够专注于核心业务逻辑的创新。
统一的标准
MCP采用开放式的架构设计,其标准接口协议兼容多种主流AI框架,包括TensorFlow、PyTorch、PaddlePaddle等深度学习平台,以及GPT、BERT等预训练模型。
这种统一的标准使得开发者能够在不同模型之间进行无缝切换,例如在开发对话系统时,可以先使用GPT-3进行原型验证,然后根据性能需求切换到更高效的GPT-4或Claude模型。
MCP还提供了标准化的模型评估指标和性能监控工具,帮助开发者快速比较不同模型的优劣,做出最优选择。这种灵活性不仅提高了开发效率,还显著降低了模型迁移和集成的成本。
数据安全
MCP在数据安全方面采用了多层次的安全机制。首先,它支持端到端的数据加密传输,确保数据在传输过程中的安全性。
其次,MCP允许开发者通过自定义接口来精确控制数据的访问权限和传输范围,例如可以设置只传输必要的特征数据,而将原始数据保留在本地。
此外,MCP还提供了数据脱敏、差分隐私等高级安全功能,帮助开发者满足GDPR等数据保护法规的要求。
在实际应用中,如果开发者需要处理医疗健康数据,可以通过MCP的安全接口仅传输去标识化后的数据,同时保留关键特征用于AI模型训练,既保护了用户隐私,又保证了模型的准确性。这种灵活的数据安全管理方式,使MCP能够适应不同行业和应用场景的个性化安全需求。
五、MCP与Function Call的区别
MCP(Message Channel Pattern)与Function Call(函数调用)是两种不同的通信机制,它们在协议、应用场景和调用方式上存在显著差异。
对比项 | MCP | Function Call |
---|---|---|
定义 | 模型和其它设备集成的标准接口,包含工具、资源和提示词 | 将模型连接到外部数据和系统,平铺式罗列工具 |
协议 | JSON - RPC,支持双向通信、可发现性和更新通知能力 | JSON - Schema,静态函数调用 |
调用方式 | Stdio / SSE / 同进程调用 | 同进程调用 / 编程语言对应的函数 |
适用场景 | 更适合动态、复杂的交互场景 | 单一特定工具、静态函数执行调用 |
系统集成难度 | 高 | 简单 |
工程化程度 | 高 | 低 |
我们不难看到,MCP协议的出现也与Java开发中的传统架构在业务环境日益复杂后的进化方式相似。
我们知道在Web开发的早期阶段,JSP(JavaServer Pages)和PHP等技术主导了动态网页的开发。这些技术将前端HTML页面与后端业务逻辑紧密耦合在一起,通常在一个文件中同时包含HTML标签和服务器端脚本代码。
这种开发模式虽然简单直接,但随着项目规模的扩大,暴露出诸多问题:前端开发人员需要理解后端逻辑,后端开发人员也要关注页面展示,导致开发效率低下;代码的可读性和可维护性差,修改一个功能可能影响多个模块;前后端开发人员协作困难,经常需要等待对方完成工作才能继续开发。
随着Web 2.0时代的到来,AJAX(Asynchronous JavaScript and XML)技术率先打破了这种僵局。它允许网页在不重新加载整个页面的情况下与服务器进行异步通信,实现了前后端的初步分离。
随后,Node.js的出现使得JavaScript可以同时用于前端和后端开发,进一步推动了前后端分离的进程。RESTful API的普及则为前后端通信提供了标准化的接口规范,使得前端可以专注于用户界面和交互逻辑,后端则专注于业务逻辑和数据处理。
这种分离的开发模式带来了显著的优势:前后端可以并行开发,提高了开发效率;代码结构更加清晰,便于维护和扩展;前后端团队可以专注于各自的领域,提升专业技能。
在AI开发领域,MCP(Modular Cognitive Platform)也正在引领类似的变革。MCP采用"工具分层"的架构设计,将AI开发过程划分为工具层和Agent层两个主要层次。
在工具层,工具开发者专注于开发高质量、可复用的AI功能模块,如自然语言处理、计算机视觉、知识图谱等。这些工具经过严格测试和优化,提供标准化的接口和文档。
在Agent层,AI Agent开发者则专注于将这些工具进行灵活组合,构建满足特定业务需求的智能应用。
这种"工具分层"的架构设计,正在推动AI开发向更加模块化、标准化和高效化的方向发展,为构建复杂AI系统提供了新的范式。
六、结语
MCP作为一种创新的协议标准,为人工智能领域带来了新的发展机遇。它不仅解决了传统模式下大语言模型应用和Agent开发的诸多痛点,还为AI模型的应用提供了更加广阔的空间。
在未来,我们可以预见,MCP将在更多的领域得到应用,为人工智能的发展带来更多的可能性。在后面的章节中,咱们将继续和大家一同探讨该如何使用MCP以及MCP的架构解构,进一步认识MCP。