卡塔兰(Catalan Number)数和斯特林公式(Stirling Approximation)分析

本文深入探讨了卡塔兰数的递推公式及其通项公式推导,通过生成函数得出h(n)=n+11Cn2n。同时,详细解析了斯特林公式的两个部分,证明了n!=2πn(en)n,并展示了O(h(n))的渐进行为,得出渐近上界O(n234n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.卡塔兰数
设第n个卡塔兰数为 h ( n ) h(n) h(n) h ( n ) h(n) h(n)满足 h ( n ) = ∑ i = 1 n h ( n − i ) ∗ h ( i − 1 ) ( h ( 0 ) = 1 , h ( 1 ) = 1 ) h(n)=\sum^{n}_{i=1}{h(n-i)*h(i-1)}(h(0)=1,h(1)=1) h(n)=i=1nh(ni)h(i1)(h(0)=1,h(1)=1)
下面由上述定义的递推公式推导卡塔兰数的通项公式
对于数列 { h ( 1 ) , h ( 2 ) , h ( 3 ) , . . . h ( n ) . . . } \{h(1),h(2),h(3),...h(n)...\} {h(1),h(2),h(3),...h(n)...}
其生成函数为 G ( x ) = h ( 0 ) x + h ( 1 ) x 2 + . . . + h ( n ) x n + 1 + . . . G(x)=h(0)x+h(1)x^2+...+h(n)x^{n+1}+... G(x)=h(0)x+h(1)x2+...+h(n)xn+1+...
[ G ( x ) ] 2 = h ( 0 ) x 2 + ( h ( 0 ) h ( 1 ) + h ( 1 ) h ( 0 ) ) x 3 + ( h ( 0 ) h ( 2 ) + h ( 1 ) h ( 1 ) + h ( 2 ) h ( 0 ) ) x 4 . . . [G(x)]^2=h(0)x^2+(h(0)h(1)+h(1)h(0))x^3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x^4... [G(x)]2=h(0)x2+(h(0)h(1)+h(1)h(0))x3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x4...
由递推公式可知
[ G ( x ) ] 2 = G ( x ) − x [G(x)]^2=G(x)-x [G(x)]2=G(x)x
解得: x 1 = 1 − 1 − 4 x 2 , x 2 = 1 + 1 − 4 x 2 ( G ( 0 ) = 0 , 故 x 2 舍 去 ) x_1=\frac{1-\sqrt{1-4x}}{2},x_2=\frac{1+\sqrt{1-4x}}{2}(G(0)=0,故x_2舍去) x1=2114x ,x2=21+14x (G(0)=0,x2)
根据牛顿二项式 ( 1 − 4 x ) 1 2 = 1 − 2 1 n + 1 ∑ n = 1 ∞ C n 2 n x n (1-4x)^{\frac{1}{2}}=1-2\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n (14x)21=12n+11n=1Cn2nxn
化简得
G ( x ) = 1 n + 1 ∑ n = 1 ∞ C n 2 n x n , 所 以 h ( n ) = 1 n + 1 C n 2 n G(x)=\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n,所以h(n)=\frac{1}{n+1}C^{2n}_{n} G(x)=n+11n=1Cn2nxnh(n)=n+11Cn2n
2.斯特林公式
n ! = 2 π n ( n e ) n n!=\sqrt{2\pi n}{(\frac{n}{e})}^n n!=2πn (en)n
(1)第一部分
由微积分知识可知
I k = ∫ 0 π 2 s i n k ( x ) d x = I_k=\int^{\frac{\pi}{2}}_0sin^k(x)dx= Ik=02πsink(x)dx=
π 2 ( k = 0 ) \frac{\pi}{2}(k=0) 2π(k=0)
1 ( k = 1 ) 1(k=1) 1(k=1)
( k − 1 ) ! ! k ! ! ( k 为 奇 数 ) \frac{(k-1)!!}{k!!}(k为奇数) k!!(k1)!!(k)
( k − 1 ) ! ! k ! ! π 2 ( k 为 偶 数 ) \frac{(k-1)!!}{k!!}\frac{\pi}{2}(k为偶数) k!!(k1)!!2π(k)
s i n ( x ) &lt; 1 sin(x)&lt;1 sin(x)<1可知: I 2 k + 1 &lt; I 2 k &lt; I 2 k − 1 I_{2k+1}&lt;I_{2k}&lt;I_{2k-1} I2k+1<I2k<I2k1,即
1 &lt; π 2 ( ( 2 k ) ! ! ( 2 k − 1 ) ! ! ) 2 1 2 k + 1 &lt; 2 k + 1 2 k 1&lt;\frac{\frac{\pi}{2}}{(\frac{(2k)!!}{(2k-1)!!})^2\frac{1}{2k+1}}&lt;\frac{2k+1}{2k} 1<((2k1)!!(2k)!!)22k+112π<2k2k+1
对两边取极限,由夹逼定理可知
lim ⁡ k → ∞ ( 2 2 k ( k ! ) 2 2 k ! ) 2 1 2 k + 1 \lim_{k→\infty}{{(\frac{2^{2k}({k!})^2}{2k!})}^2\frac{1}{2k+1}} klim(2k!22k(k!)2)22k+11
(2)第二部分
I n = ∫ 1 n ln ⁡ n = n ln ⁡ n − n + 1 I_n=\int^{n}_1\ln n =n\ln n-n+1 In=1nlnn=nlnnn+1
该积分内接梯形面积为 s n = ln ⁡ n ! − 1 2 ln ⁡ n s_n=\ln n!-\frac{1}{2}\ln n sn=lnn!21lnn,外接梯形面积 S n = ln ⁡ n ! − 1 2 ln ⁡ n + 1 8 S_n=\ln n!-\frac{1}{2}\ln n+\frac{1}{8} Sn=lnn!21lnn+81
a n = I n − s n &lt; 1 8 a_n=I_n-s_n&lt;\frac{1}{8} an=Insn<81, a n a_n an单调递增(积分面积与内接梯形面积差值随n增大而增大)有上界,故 a n a_n an极限存在
a n = n ln ⁡ n − n + 1 − ln ⁡ n ! − 1 2 ln ⁡ n a_n=n\ln n-n+1-\ln n!-\frac{1}{2}\ln n an=nlnnn+1lnn!21lnn转化得 ln ⁡ n ! = 1 − a n + n ln ⁡ n + 1 2 ln ⁡ n − n \ln n!=1-a_n+n\ln n+\frac{1}{2}\ln n-n lnn!=1an+nlnn+21lnnn
两边互取指数得 n ! = e 1 − a n n ( n e ) n n!=e^{1-a_n}\sqrt{n}{(\frac{n}{e})}^n n!=e1ann (en)n,设 b n = e 1 − a n , lim ⁡ n → ∞ b n = b b_n=e^{1-a_n},\lim_{n→\infty}b_n=b bn=e1an,limnbn=b
代入第一部分得到的公式得:
lim ⁡ k → ∞ ( 2 2 k ( b k k ( k e ) k ) 2 b 2 k 2 k ( 2 k e ) 2 k ) 2 1 2 k + 1 = π 2 \lim_{k→\infty}(\frac{2^{2k}(b_k\sqrt{k}{(\frac{k}{e})}^k)^2}{b_{2k}\sqrt{2k}(\frac{2k}{e})^{2k}})^2\frac{1}{2k+1}=\frac{\pi}{2} klim(b2k2k (e2k)2k22k(bkk (ek)k)2)22k+11=2π
b lim ⁡ k 2 1 2 k + 1 = π 2 , 所 以 b = 2 π b\lim\frac{k}{2}\frac{1}{2k+1}=\frac{\pi}{2},所以b=\sqrt{2\pi} blim2k2k+11=2π,b=2π
得 到 斯 特 林 公 式 : n ! = 2 π n ( n e ) n 得到斯特林公式:n!=\sqrt{2\pi n}{(\frac{n}{e})}^n :n!=2πn (en)n
3.对于O(h(n))的化简
O ( h ( n ) ) = O ( 1 n + 1 C 2 n n ) = O ( 1 n + 1 ( 2 n ) ! ( n ! ) 2 ) = O ( 1 n + 1 4 n 4 π n ( n e ) 2 n 2 π n ( n e ) 2 n ) = O ( 4 n n 3 2 ) ( 此 上 界 随 n 增 大 而 渐 进 ) O(h(n))=O(\frac{1}{n+1}C^n_{2n})=O(\frac{1}{n+1}\frac{(2n)!}{(n!)^2})=O(\frac{1}{n+1}\frac{4^n\sqrt{4\pi n}(\frac{n}{e})^{2n}}{2\pi n(\frac{n}{e})^{2n}})=O(\frac{4^n}{n^{\frac{3}{2}}})(此上界随n增大而渐进) O(h(n))=O(n+11C2nn)=O(n+11(n!)2(2n)!)=O(n+112πn(en)2n4n4πn (en)2n)=O(n234n)(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值