1.卡塔兰数
设第n个卡塔兰数为 h ( n ) h(n) h(n), h ( n ) h(n) h(n)满足 h ( n ) = ∑ i = 1 n h ( n − i ) ∗ h ( i − 1 ) ( h ( 0 ) = 1 , h ( 1 ) = 1 ) h(n)=\sum^{n}_{i=1}{h(n-i)*h(i-1)}(h(0)=1,h(1)=1) h(n)=i=1∑nh(n−i)∗h(i−1)(h(0)=1,h(1)=1)
下面由上述定义的递推公式推导卡塔兰数的通项公式
对于数列 { h ( 1 ) , h ( 2 ) , h ( 3 ) , . . . h ( n ) . . . } \{h(1),h(2),h(3),...h(n)...\} {
h(1),h(2),h(3),...h(n)...}
其生成函数为 G ( x ) = h ( 0 ) x + h ( 1 ) x 2 + . . . + h ( n ) x n + 1 + . . . G(x)=h(0)x+h(1)x^2+...+h(n)x^{n+1}+... G(x)=h(0)x+h(1)x2+...+h(n)xn+1+...
[ G ( x ) ] 2 = h ( 0 ) x 2 + ( h ( 0 ) h ( 1 ) + h ( 1 ) h ( 0 ) ) x 3 + ( h ( 0 ) h ( 2 ) + h ( 1 ) h ( 1 ) + h ( 2 ) h ( 0 ) ) x 4 . . . [G(x)]^2=h(0)x^2+(h(0)h(1)+h(1)h(0))x^3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x^4... [G(x)]2=h(0)x2+(h(0)h(1)+h(1)h(0))x3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x4...
由递推公式可知
[ G ( x ) ] 2 = G ( x ) − x [G(x)]^2=G(x)-x [G(x)]2=G(x)−x
解得: x 1 = 1 − 1 − 4 x 2 , x 2 = 1 + 1 − 4 x 2 ( G ( 0 ) = 0 , 故 x 2 舍 去 ) x_1=\frac{1-\sqrt{1-4x}}{2},x_2=\frac{1+\sqrt{1-4x}}{2}(G(0)=0,故x_2舍去) x1=21−1−4x,x2=21+1−4x(G(0)=0,故x2舍去)
根据牛顿二项式 ( 1 − 4 x ) 1 2 = 1 − 2 1 n + 1 ∑ n = 1 ∞ C n 2 n x n (1-4x)^{\frac{1}{2}}=1-2\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n (1−4x)
卡塔兰(Catalan Number)数和斯特林公式(Stirling Approximation)分析
最新推荐文章于 2019-12-01 15:08:30 发布
本文深入探讨了卡塔兰数的递推公式及其通项公式推导,通过生成函数得出h(n)=n+11Cn2n。同时,详细解析了斯特林公式的两个部分,证明了n!=2πn(en)n,并展示了O(h(n))的渐进行为,得出渐近上界O(n234n)。
摘要由CSDN通过智能技术生成