1.卡塔兰数
设第n个卡塔兰数为
h
(
n
)
h(n)
h(n),
h
(
n
)
h(n)
h(n)满足
h
(
n
)
=
∑
i
=
1
n
h
(
n
−
i
)
∗
h
(
i
−
1
)
(
h
(
0
)
=
1
,
h
(
1
)
=
1
)
h(n)=\sum^{n}_{i=1}{h(n-i)*h(i-1)}(h(0)=1,h(1)=1)
h(n)=i=1∑nh(n−i)∗h(i−1)(h(0)=1,h(1)=1)
下面由上述定义的递推公式推导卡塔兰数的通项公式
对于数列
{
h
(
1
)
,
h
(
2
)
,
h
(
3
)
,
.
.
.
h
(
n
)
.
.
.
}
\{h(1),h(2),h(3),...h(n)...\}
{h(1),h(2),h(3),...h(n)...}
其生成函数为
G
(
x
)
=
h
(
0
)
x
+
h
(
1
)
x
2
+
.
.
.
+
h
(
n
)
x
n
+
1
+
.
.
.
G(x)=h(0)x+h(1)x^2+...+h(n)x^{n+1}+...
G(x)=h(0)x+h(1)x2+...+h(n)xn+1+...
[
G
(
x
)
]
2
=
h
(
0
)
x
2
+
(
h
(
0
)
h
(
1
)
+
h
(
1
)
h
(
0
)
)
x
3
+
(
h
(
0
)
h
(
2
)
+
h
(
1
)
h
(
1
)
+
h
(
2
)
h
(
0
)
)
x
4
.
.
.
[G(x)]^2=h(0)x^2+(h(0)h(1)+h(1)h(0))x^3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x^4...
[G(x)]2=h(0)x2+(h(0)h(1)+h(1)h(0))x3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x4...
由递推公式可知
[
G
(
x
)
]
2
=
G
(
x
)
−
x
[G(x)]^2=G(x)-x
[G(x)]2=G(x)−x
解得:
x
1
=
1
−
1
−
4
x
2
,
x
2
=
1
+
1
−
4
x
2
(
G
(
0
)
=
0
,
故
x
2
舍
去
)
x_1=\frac{1-\sqrt{1-4x}}{2},x_2=\frac{1+\sqrt{1-4x}}{2}(G(0)=0,故x_2舍去)
x1=21−1−4x,x2=21+1−4x(G(0)=0,故x2舍去)
根据牛顿二项式
(
1
−
4
x
)
1
2
=
1
−
2
1
n
+
1
∑
n
=
1
∞
C
n
2
n
x
n
(1-4x)^{\frac{1}{2}}=1-2\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n
(1−4x)21=1−2n+11n=1∑∞Cn2nxn
化简得
G
(
x
)
=
1
n
+
1
∑
n
=
1
∞
C
n
2
n
x
n
,
所
以
h
(
n
)
=
1
n
+
1
C
n
2
n
G(x)=\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n,所以h(n)=\frac{1}{n+1}C^{2n}_{n}
G(x)=n+11n=1∑∞Cn2nxn,所以h(n)=n+11Cn2n
2.斯特林公式
n
!
=
2
π
n
(
n
e
)
n
n!=\sqrt{2\pi n}{(\frac{n}{e})}^n
n!=2πn(en)n
(1)第一部分
由微积分知识可知
I
k
=
∫
0
π
2
s
i
n
k
(
x
)
d
x
=
I_k=\int^{\frac{\pi}{2}}_0sin^k(x)dx=
Ik=∫02πsink(x)dx=
π
2
(
k
=
0
)
\frac{\pi}{2}(k=0)
2π(k=0)
1
(
k
=
1
)
1(k=1)
1(k=1)
(
k
−
1
)
!
!
k
!
!
(
k
为
奇
数
)
\frac{(k-1)!!}{k!!}(k为奇数)
k!!(k−1)!!(k为奇数)
(
k
−
1
)
!
!
k
!
!
π
2
(
k
为
偶
数
)
\frac{(k-1)!!}{k!!}\frac{\pi}{2}(k为偶数)
k!!(k−1)!!2π(k为偶数)
由
s
i
n
(
x
)
<
1
sin(x)<1
sin(x)<1可知:
I
2
k
+
1
<
I
2
k
<
I
2
k
−
1
I_{2k+1}<I_{2k}<I_{2k-1}
I2k+1<I2k<I2k−1,即
1
<
π
2
(
(
2
k
)
!
!
(
2
k
−
1
)
!
!
)
2
1
2
k
+
1
<
2
k
+
1
2
k
1<\frac{\frac{\pi}{2}}{(\frac{(2k)!!}{(2k-1)!!})^2\frac{1}{2k+1}}<\frac{2k+1}{2k}
1<((2k−1)!!(2k)!!)22k+112π<2k2k+1
对两边取极限,由夹逼定理可知
lim
k
→
∞
(
2
2
k
(
k
!
)
2
2
k
!
)
2
1
2
k
+
1
\lim_{k→\infty}{{(\frac{2^{2k}({k!})^2}{2k!})}^2\frac{1}{2k+1}}
k→∞lim(2k!22k(k!)2)22k+11
(2)第二部分
I
n
=
∫
1
n
ln
n
=
n
ln
n
−
n
+
1
I_n=\int^{n}_1\ln n =n\ln n-n+1
In=∫1nlnn=nlnn−n+1
该积分内接梯形面积为
s
n
=
ln
n
!
−
1
2
ln
n
s_n=\ln n!-\frac{1}{2}\ln n
sn=lnn!−21lnn,外接梯形面积
S
n
=
ln
n
!
−
1
2
ln
n
+
1
8
S_n=\ln n!-\frac{1}{2}\ln n+\frac{1}{8}
Sn=lnn!−21lnn+81
设
a
n
=
I
n
−
s
n
<
1
8
a_n=I_n-s_n<\frac{1}{8}
an=In−sn<81,
a
n
a_n
an单调递增(积分面积与内接梯形面积差值随n增大而增大)有上界,故
a
n
a_n
an极限存在
a
n
=
n
ln
n
−
n
+
1
−
ln
n
!
−
1
2
ln
n
a_n=n\ln n-n+1-\ln n!-\frac{1}{2}\ln n
an=nlnn−n+1−lnn!−21lnn转化得
ln
n
!
=
1
−
a
n
+
n
ln
n
+
1
2
ln
n
−
n
\ln n!=1-a_n+n\ln n+\frac{1}{2}\ln n-n
lnn!=1−an+nlnn+21lnn−n
两边互取指数得
n
!
=
e
1
−
a
n
n
(
n
e
)
n
n!=e^{1-a_n}\sqrt{n}{(\frac{n}{e})}^n
n!=e1−ann(en)n,设
b
n
=
e
1
−
a
n
,
lim
n
→
∞
b
n
=
b
b_n=e^{1-a_n},\lim_{n→\infty}b_n=b
bn=e1−an,limn→∞bn=b
代入第一部分得到的公式得:
lim
k
→
∞
(
2
2
k
(
b
k
k
(
k
e
)
k
)
2
b
2
k
2
k
(
2
k
e
)
2
k
)
2
1
2
k
+
1
=
π
2
\lim_{k→\infty}(\frac{2^{2k}(b_k\sqrt{k}{(\frac{k}{e})}^k)^2}{b_{2k}\sqrt{2k}(\frac{2k}{e})^{2k}})^2\frac{1}{2k+1}=\frac{\pi}{2}
k→∞lim(b2k2k(e2k)2k22k(bkk(ek)k)2)22k+11=2π
b
lim
k
2
1
2
k
+
1
=
π
2
,
所
以
b
=
2
π
b\lim\frac{k}{2}\frac{1}{2k+1}=\frac{\pi}{2},所以b=\sqrt{2\pi}
blim2k2k+11=2π,所以b=2π
得
到
斯
特
林
公
式
:
n
!
=
2
π
n
(
n
e
)
n
得到斯特林公式:n!=\sqrt{2\pi n}{(\frac{n}{e})}^n
得到斯特林公式:n!=2πn(en)n
3.对于O(h(n))的化简
O
(
h
(
n
)
)
=
O
(
1
n
+
1
C
2
n
n
)
=
O
(
1
n
+
1
(
2
n
)
!
(
n
!
)
2
)
=
O
(
1
n
+
1
4
n
4
π
n
(
n
e
)
2
n
2
π
n
(
n
e
)
2
n
)
=
O
(
4
n
n
3
2
)
(
此
上
界
随
n
增
大
而
渐
进
)
O(h(n))=O(\frac{1}{n+1}C^n_{2n})=O(\frac{1}{n+1}\frac{(2n)!}{(n!)^2})=O(\frac{1}{n+1}\frac{4^n\sqrt{4\pi n}(\frac{n}{e})^{2n}}{2\pi n(\frac{n}{e})^{2n}})=O(\frac{4^n}{n^{\frac{3}{2}}})(此上界随n增大而渐进)
O(h(n))=O(n+11C2nn)=O(n+11(n!)2(2n)!)=O(n+112πn(en)2n4n4πn(en)2n)=O(n234n)(此上界随n增大而渐进)
卡塔兰(Catalan Number)数和斯特林公式(Stirling Approximation)分析
最新推荐文章于 2021-12-08 20:26:45 发布