Stirling's approximation

Stirling’s approximation 是对 n ! n! n!趋于无穷速度的估计, 可扩展到对 Gamma function 的估计.

一般表达形式

n ! ∼ 2 π n ( n e ) n , n → ∞ . n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right) ^n, n \to \infty. n!2πn (en)n,n.
Γ ( z + 1 ) ∼ 2 π z ( z e ) z , z → ∞ . \Gamma(z+1) \sim \sqrt{2 \pi z} \left( \frac{z}{e} \right) ^z, z \to \infty. Γ(z+1)2πz (ez)z,z.

证明

注意到 Gamma function 是连接阶乘和积分的一个桥梁。

n ! = Γ ( n + 1 ) = ∫ 0 ∞ x n e − x d x = ∫ 0 ∞ e n ln ⁡ x − x d x = n n + 1 ∫ 0 ∞ e n ( ln ⁡ y − y ) d y ,   l e t   x = n y \begin{aligned} n! &= \Gamma(n+1) \\ &= \int_0^{\infty} x^ne^{-x} dx \\ &= \int_0^{\infty} e^{n \ln x - x} dx \\ &= n^{n+1} \int_0^{\infty} e^{n (\ln y - y)} dy, \ let \ x=ny \end{aligned} n!=Γ(n+1)=0xnexdx=0enlnxxdx=nn+10en(lnyy)dy, let x=ny

Laplace’s method 可知
∫ 0 ∞ e n ( ln ⁡ y − y ) ∼ 2 π n e − n , \int_0^{\infty} e^{n (\ln y - y)} \sim \sqrt{\frac{2\pi}{n}} e^{-n}, 0en(lnyy)n2π en,
因此
n ! ∼ n n + 1 2 π n e − n = 2 π n ( n e ) n . n! \sim n^{n+1} \sqrt{\frac{2\pi}{n}} e^{-n} = \sqrt{2 \pi n} \left( \frac{n}{e} \right) ^n. n!nn+1n2π en=2πn (en)n.

比较精准的逼近

n ! ∼ 2 π n ( n e ) n ( 1 + 1 12 n + 1 288 n 2 − 139 51840 n 3 − 571 2488320 n 4 + ⋯   ) . n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right) ^n \left( 1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \cdots \right). n!2πn (en)n(1+12n1+288n2151840n31392488320n4571+).

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值