python算法(基础)----队列(先进先出,FIFO)

本文介绍了队列这一有序集合,它遵循FIFO排序属性,阐述了队列的创建、入队、出队等操作。给出了Python实现队列的代码,还通过模拟烫手山芋游戏展示了队列在真实场景中的应用,此外还提及队列实现打印机的例子。

队列被构造为在队尾添加项的有序集 合,并且从队首移除。队列保持 FIFO 排序属性。 队列操作如下。

  1. Queue() 创建一个空的新队列。 它不需要参数,并返回一个空队列。
  2. equeue(item) 将新项添加到队尾。 它需要 item 作为参数,并不返回任何内容。
  3. dequeue() 从队首移除项。它不需要参数并返回 item。 队列被修改
  4. isEmpty() 查看队列是否为空。它不需要参数,并返回布尔值。
  5. size() 返回队列中的项数。它不需要参数,并返回一个整数。

  • Python实现队列

​​​​​​​下面代码所示的实现假定队尾在列表中的位置为 0。这允许我们使用列表上的插入函数向队尾添加新元素。弹出操作可用于删除队首的元素(列表的最后一个元素)。回想一下,这也意味着入队为 O(n),出队为O(1)。

class Queue:
    def __init__(self):
        self.items = []
    def isEmpty(self):
        return self.items == []
    def enqueue(self, item):
        self.items.insert(0,item)
    def dequeue(self):
        return self.items.pop()
    def size(self):
        return len(self.items)

模拟:烫手山芋

队列的典型应用之一是模拟需要以FIFO方式管理数据的真实场景。首先,让我们看看孩子们的游戏烫手山芋,在这个游戏中(见 Figure 2),孩子们围成一个圈,并尽可能快的将一个山芋递给旁边的孩子。在某一个时间,动作结束,有山芋的孩子从圈中移除。游戏继续开始直到剩下最后一个孩子。

我们将模拟这个烫山芋的过程。我们的程序将输入名称列表和一个称为 num 常量用于报数。 它将返回以num为单位重复报数后剩余的最后一个人的姓名。为了模拟这个圈,我们使用队列(见 Figure3)。假设拿着山芋的孩子在队列的前面。当拿到山芋的时候,这个孩子将先出列再入队列,把他放在队列的最后。经过 num 次的出队入队后,前面的孩子将被永久移除队列。并且另一个周期开始,继续此过程,直到只剩下一个名 字(队列的大小为 1)。

from pythonds.basic.queue import Queue
def hotPotato(namelist, num):
    simqueue = Queue()
    for name in namelist:
        simqueue.enqueue(name)
    while simqueue.size() > 1:
        for i in range(num):
            simqueue.enqueue(simqueue.dequeue())
        simqueue.dequeue()
    return simqueue.dequeue()
print(hotPotato(["Bill","David","Susan","Jane","Kent","Brad"],7))

还有一个典型的例子是队列实现打印机,读者可自行百度了解下。

### 页面置换算法 FIFO、OPT 和 LRU 的实现与比较 #### FIFO先进先出算法 FIFO 是一种简单的页面置换算法,其核心思想是选择最早进入内存的页面进行替换。当发生缺页中断时,该算法会优先淘汰驻留在内存中最久的一页。 其实现逻辑如下: 1. 使用队列来记录当前内存中的页面顺序。 2. 当新页面需要加载到内存中且内存已满时,移除队首页面并将其替换成新的页面。 3. 新页面会被加入到队尾。 以下是 FIFO 算法的一个简单 Python 实现[^1]: ```python def fifo(pages, frame_size): memory = [] page_faults = 0 for page in pages: if page not in memory: if len(memory) >= frame_size: memory.pop(0) # 移除最早的页面 memory.append(page) page_faults += 1 return page_faults ``` #### OPT(最优)算法 OPT 被认为是一种理想化的页面置换策略,因为它基于未来的信息做出决策。具体来说,在发生缺页中断时,它会选择在未来最长一段时间内不会被使用的页面进行替换。然而,由于这种预测能力通常无法在实际系统中实现,因此 OPT 更多地用于理论分析和性能对比。 其实现过程较为复杂,因为需要提前知道后续所有的页面请求序列。下面是一个假设性的伪代码描述[^1]: ```python def opt(pages, frame_size): memory = [] page_faults = 0 future_accesses = {page: [] for page in set(pages)} # 预处理每一页未来的访问位置 for idx, page in enumerate(pages): future_accesses[page].append(idx) for i, page in enumerate(pages): if page not in memory: if len(memory) >= frame_size: # 找到离下次访问最远的页面 farthest_page = None max_distance = -1 for p in memory: next_access_idx = future_accesses[p][0] if future_accesses[p] and future_accesses[p][0] > i else float('inf') if next_access_idx > max_distance: max_distance = next_access_idx farthest_page = p memory.remove(farthest_page) memory.append(page) page_faults += 1 return page_faults ``` #### LRU(最近最少使用)算法 LRU 基于这样一个原则:如果某个页面很久没有被访问过,则可以推测它可能也不会很快再次被使用。因此,在发生缺页中断时,LRU 将淘汰那些距离上次访问时间间隔最大的页面。 为了高效地维护这些信息,一般采用哈希表配合双向链表的数据结构来进行管理。下面是 LRU 的一个简化版本实现[^1]: ```python from collections import OrderedDict class LRUCache: def __init__(self, capacity): self.cache = OrderedDict() self.capacity = capacity def get(self, key): if key not in self.cache: return -1 value = self.cache[key] self.cache.move_to_end(key) # 更新为最新访问 return value def put(self, key, value): if key in self.cache: del self.cache[key] elif len(self.cache) >= self.capacity: self.cache.popitem(last=False) # 删除最旧项 self.cache[key] = value def lru_simulator(pages, frame_size): cache = LRUCache(frame_size) page_faults = 0 for page in pages: if cache.get(page) == -1: page_faults += 1 cache.put(page, True) return page_faults ``` #### 性能比较 三种算法各有优缺点: | 特性 | FIFO | OPT | LRU | |--------------|--------------------------|-------------------------|---------------------| | **优点** | 实现简单 | 缺页率最低 | 较接近最佳效果 | | **缺点** | 可能导致 Belady 异常 | 不可预见未来数据流 | 维护成本较高 | | **适用场景** | 对实时性和资源消耗敏感 | 主要用于理论研究或模拟 | 多数现代操作系统中 | 尽管 OPT 提供了理论上最好的性能表现,但由于依赖不可知的未来事件,所以并不适合真实环境下的应用;相比之下,FIFO 易于部署但存在局限性,而 LRU 则通过合理折衷实现了较好的综合效益[^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狼性书生

谢谢鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值