目录
以python自带数据鸢尾花数据为例,导入需要用到的包和数据。
注:除此步骤外,以下每张图对于的代码段可单独使用,可直接跳转至需要的图。
#下载和导入需要的库
pip install numpy
pip install scipy
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
1 两主特征:二维散点图
1.1 二维散点图
以python自带数据鸢尾花数据为例。
#导入鸢尾花数据,并重构数据框
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data[:],columns=iris.feature_names[:])
#绘制前两个特征的二维散点图
plt.scatter(df['sepal length (cm)'], df['sepal width (cm)'], alpha=0.8)
plt.xlabel('sepal length (cm)') # 横坐标轴标题
plt.ylabel('sepal width (cm)') # 纵坐标轴标题
plt.show()
1.2 二维分类散点图
根据鸢尾花数据集前两个特征进行K-means聚类,聚成4类后在上述基础上在散点图中区分这四类。
#导入鸢尾花数据,并重构数据框
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data[:],columns=iris.feature_names[:])
#在二维散点图之上,区别某些特征
#根据前两个特征:利用K-means聚类将数据聚成四类
pip install sklearn
from sklearn.cluster import KMeans
estimator = KMeans(n_clusters=4) #构造聚类器
estimator.fit(df.iloc[:,0:2]) #聚类
label_pred = estimator.labels_ #获取聚类标签
df['label'] = label_pred #在原数据表显示聚类标签
#绘制k-means结果
x0 = df[label_pred == 0]
x1 = df[label_pred == 1]
x2 = df[label_pred == 2]
x3 = df[label_pred == 3]
plt.scatter(x0.iloc[:, 0], x0.iloc[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1.iloc[:, 0], x1.iloc[:, 1], c = "green", marker='*', label='label1')
plt.scatter(x2.iloc[:, 0], x2.iloc[:, 1],