[Python] 散点图(二维散点图、三维散点图、散点图矩阵)

目录

1 两主特征:二维散点图

1.1 二维散点图

1.2 二维分类散点图

1.3 气泡图

2 三主特征:三维散点图

2.1 三维散点图

2.2 三维分类散点图

3 多主特征:二维散点图矩阵

3.1 二维散点图矩阵

3.2 二维分类散点图矩阵


以python自带数据鸢尾花数据为例,导入需要用到的包和数据。
注:除此步骤外,以下每张图对于的代码段可单独使用,可直接跳转至需要的图。

#下载和导入需要的库
pip install numpy
pip install scipy

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

1 两主特征:二维散点图

1.1 二维散点图

以python自带数据鸢尾花数据为例。

#导入鸢尾花数据,并重构数据框
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data[:],columns=iris.feature_names[:])

#绘制前两个特征的二维散点图
plt.scatter(df['sepal length (cm)'], df['sepal width (cm)'], alpha=0.8)
plt.xlabel('sepal length (cm)')  # 横坐标轴标题
plt.ylabel('sepal width (cm)')  # 纵坐标轴标题
plt.show()

1.2 二维分类散点图

根据鸢尾花数据集前两个特征进行K-means聚类,聚成4类后在上述基础上在散点图中区分这四类。

#导入鸢尾花数据,并重构数据框
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data[:],columns=iris.feature_names[:])

#在二维散点图之上,区别某些特征
#根据前两个特征:利用K-means聚类将数据聚成四类
pip install sklearn
from sklearn.cluster import KMeans
estimator = KMeans(n_clusters=4)   #构造聚类器
estimator.fit(df.iloc[:,0:2])      #聚类
label_pred = estimator.labels_     #获取聚类标签
df['label'] = label_pred           #在原数据表显示聚类标签

#绘制k-means结果
x0 = df[label_pred == 0]
x1 = df[label_pred == 1]
x2 = df[label_pred == 2]
x3 = df[label_pred == 3]
plt.scatter(x0.iloc[:, 0], x0.iloc[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1.iloc[:, 0], x1.iloc[:, 1], c = "green", marker='*', label='label1')
plt.scatter(x2.iloc[:, 0], x2.iloc[:, 1], 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禾木页

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值