tf.test.is_built_with_cuda():True
tf.test.is_gpu_available():False
这个问题困扰了本人很久,因为论文需要,找了许多的解决办法,终于将出现的问题一个一个的解决了!
本来因为模型需要,我只需要运行神经网络的部分,一开始cpu计算能力完全是够的,最多就等久一点。但随着模型的深入,cpu开始崩了,于是想到了使用gpu。
最开始用的tensorflow是2.7.0的版本,当时虽然也有许多问题,但基本也能解决。但后面想调用gpu时发现超过了可以兼容的cudn。最后通过各种尝试,终于实现了tensorflow2.X+cuda+cudnn+torch的稳定版(代码放后面了)。
库包在里面了链接:百度网盘 请输入提取码https://pan.baidu.com/s/1WLzTKv8eJZ7SR6rh01OujQ
提取码:uq74
--来自百度网盘超级会员V6的分享。
关于tensorflow2.5.0+cuda11.1+cudnn+python3.8以及对应torch的win64安装解决问题。
最新推荐文章于 2025-03-26 16:46:19 发布