【秋招】算法岗的八股文之机器学习

推荐链接:
阿秀的学习笔记
JavaGuide中常见面试题总结
机器学习面试笔试求职必备八股文
朴素贝叶斯模型(naive bayes)
随机森林 – Random Forest | RF

机器学习

特征工程

  1. 特征归一化的意义:特征归一化是数据预处理中重要技术。因为特征间的单位(尺度)可能不同,为了便于后续的下游任务中特征距离计算,为了消除特征间单位和尺度差异的影响,以对每维特征同等看待,需要对特征进行归一化。【把绝对值转为相对值,这样就能体现出哪一维特征的重要性】

  2. 特征 / 向量之间的距离计算方法

    • 欧氏距离:衡量空间点的直线距离。n维向量之间的距离计算公式如下:
      ∑ i = 1 n ( x i − y i ) 2 \sqrt{\sum_{i=1}^{n}(x_i-y_i)^2 } i=1n(xiyi)2

    • 曼哈顿距离:两个点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)之间的距离计算公式如下:
      ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ \left | x_1-x_2 \right | + \left | y_1-y_2 \right | x1x2+y1y2

    • 切比雪夫距离:两个点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)之间的距离定义为其各座标数值差绝对值的最大值。
      m a x ( ∣ x 1 − x 2 ∣ , ∣ y 1 − y 2 ∣ ) max(\left | x_1-x_2 \right | ,\left | y_1-y_2 \right | ) max(x1x2,y1y2)

    • 余弦相似度:计算两个向量之间夹角的余弦值,余弦值接近1说明夹角趋近0,表示两个向量相似。余弦值越大表示向量越相似,取值区间[-1, 1]。多维向量之间的余弦值计算如下
      c o s Θ =

### 机器学习面试常见知识点 #### 基础概念与术语 在准备机器学习面试时,掌握基础的概念和术语至关重要。无论是新手还是有一定经验的从业者,在面对面试官提问时都需要能够清晰表达这些基础知识[^1]。 #### 模型评估指标 对于任何机器学习项目而言,模型性能的好坏决定了项目的成败。因此熟悉各种常用的评价标准非常重要。例如准确率、召回率、F-Score以及AUC等都是衡量分类器效果的关键指标;而对于回归问题,则更多关注于MAE、MSE、RMSE及R²这样的度量方式[^2]。 #### 极大似然估计原理及其应用场景 极大似然估计是统计学中用于参数估计的一种重要方法。其基本思路是在给定观测数据的情况下找到使得样本出现概率最大的那个未知参数值。通过具体案例可以更好地理解这种方法的应用场景——比如判断哪位射手更有可能击中目标[^4]。 ```python import numpy as np from scipy.optimize import minimize def log_likelihood(params, data): mu = params[0] sigma = params[1] ll = -np.sum(np.log(1/(sigma * np.sqrt(2*np.pi)) * np.exp(-((data-mu)**2)/(2*sigma**2)))) return ll # Example usage of MLE with a normal distribution dataset data = np.random.normal(loc=0, scale=1, size=100) initial_guess = [0, 1] result = minimize(log_likelihood, initial_guess, args=(data,)) estimated_mean, estimated_stddev = result.x print(f"Estimated Mean: {estimated_mean}, Estimated Standard Deviation: {estimated_stddev}") ``` #### 大规模预训练模型的理解与发展趋势 随着AI技术的发展,大规模预训练模型逐渐成为研究热点之一。这类模型具备强大的泛化能力,并且可以通过微调适应不同下游任务需求。深入探讨如何利用好此类资源将是未来一段时间内值得重点关注的方向[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值