Unsupervised Domain Adaptation by Backpropagation(2015)学习总结

本文介绍了DANN框架,通过对抗学习实现源域和目标域数据分布的对齐,用于无监督领域适应。关键组件包括特征提取器、分类器和域分类器,使用梯度反转层确保在训练中学习域不变的特征。最终目标是使源域和目标域在共享特征空间中具有相似表示,以便于迁移学习。
摘要由CSDN通过智能技术生成

Unsupervised Domain Adaptation by Backpropagation(2015)学习总结

本文的主要贡献是提出了一种全新的度量源域和目标域数据分布差异性的方法(基于对抗的方法)。

框架

本文的框架对三个部分进行训练:

  1. 一个是feature extractor,由卷积与池化层组成,用来提取特征
  2. 一个是label classifier,使用全连接层与逻辑分类器;
  3. 一个是domian classifier,由全连接层与交叉熵分类器组成,它与feature extractor一起构成对抗网络的框架。

DANN的图像输入在训练阶段会经过特征提取网络feature extractor的映射将输入转换为一个D维的特征向量,然后DANN会生成两个分支:图像分类预测网络label classifier以及域分类网络domain classifier。源域的数据会经过图像分类预测网络,为图像预测标签;而源域的数据与目标域的数据都会经过域分类网络。

要想实现目标域的数据集的分类任务就必须让DANN把目标域数据看做成源域数据。那么在训练阶段我们要做的是如下两个任务,第一个则是实现源域数据集准确分类,实现现图像分类误差的最小化;第二个任务则是要混淆源域数据集和目标域数据集,实现域分类误差的最大化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值