Unsupervised Domain Adaptation by Backpropagation(2015)学习笔记

Unsupervised Domain Adaptation by Backpropagation(2015)学习笔记

tip

是第一篇将对抗性训练的思想使用到域适应中的论文。

abstract

现如今,深度体系结构的良好性能大多得益于大量已标注样本下的训练。在某项任务缺乏已标记样本的情况下,如果可以获得特征相似但来自不同领域的已标记样本(例如合成图像),则领域域适应便成为一种有吸引力的选择。这里,作者提供了一种适用于深度框架下的新方法,该方法由源域中的已标注样本以及目标域中的未标注样本来进行训练(其中目标域中)。

在训练进行的过程中,这种方法促进了“深层”特征的出现:

(1)区分源域上的主要学习任务

(2)域之间的不变性==( ?)==

这种域适应行为几乎可以在任何前馈模型中通过增加几个标准层和一个简单的梯度反转层来实现,可以使用标准反向传播来训练最终的增强后的架构。

1.introduction

深度前馈网络架构为现在很多在机器学习任务和应用带来了先进的技术,可是这些提升只有在大量已标注的样本供给训练的情况下从才能实现。虽然对于缺乏已标注样本的问题,仍然有可能获得足够大的样本集来训练大规模的深度模型,但是这样获得的样本会与测试样本集中的样本分布不同,从而造成域偏移问题。例如合成图片或者半合成图片,虽然这些图片易于获取并且样本已标注,但是它们与真实的样本还是有着不小的差异。

域域适应就是在源域与目标域之间存在域偏移的情况下学习拥有良好辨别能力的分类器或者是其它鉴别器。在“浅度学习”(数据样本的特征表示已经给出)中,很多域适应方法已经取得显著成效。这些方法建立源域到目标域的映射,这样一来,在源域学习到的分类器结合了之前建立的映射后就可以应用到目标域的特定任务中域适应方法的成效主要取决于该方法利用完全未标注的目标域样本集(无监督域适应)或者在目标域部分已标注的样本集(半监督域适应)学习两个域中间映射的能力。本文主要讲重点放在更具挑战性的无监督域适应问题上。

一般的域适应方法对比使用固定的特征表示,但是本方法不同,该方法致力于在训练过程中结合域适应深度特征学习于一体。该方法的目标是将域适应嵌入学习特征表示的过程中,使得最终的分类决策是基于对域变化的区别性与不变性特征而做出的。这样,所获得的前馈网络可以适用于目标域,而不受域偏移的阻碍。

于是我们的方法在学习特征时主要将(1)分辨性与(2)域不变性结合,而该方法通过联合优化潜在的特征以及随这些特征进行操作的两个鉴别分类器实现的。这两个分类器分别是(i)用来在训练过程与测试过程中预测类别的标签的标签分类器label classifier和(ii)在训练期间区分源域与目标域的域分类器domain classifier。

该方法的三个训练步骤分别为:(i)优化两个分类器的参数来最小化其在训练集上的误差;(ii)优化底层深层特征映射的参数来最小化标签分类器的损失(iii)优化底层深层特征映射的参数来最大化域分类器的损失。

上述的三个训练步骤都可以嵌入到一个合适的深度前馈网络中(如下图fiture1所示),并可以使用基于随机梯度下降或其修改的标准反向传播算法进行训练。

image-20201024122442556

作者提出的模型架构中包括一个特征提取器(图中的绿色部分)以及一个深度标签预测器(图中蓝色部分),二者结合构成了一个标准的前馈架构

而该模型为了解决无监督域适应问题还添加了一个域分类器,并将一个梯度反转层插入到在特征提取器与域分类器之间。该梯度反转层在反向传播的训练期间,将梯度乘以某个负常数。而模型在正常的前向训标准练中,最小化标签预测损失(对于源域的样本)和域分类损失(对于所有样本)。梯度反转确保两个域上的特征分布是相似的(对于域分类器来说是尽可能不可区分的),从而产生域不变的特征。

本文提出的方法是通用的,因为它可以向任何通过反向传播训练的前馈体系结构添加域域适应模块。该方法的体系结构中唯一的非标准组件是一个相当简单的梯度反转层,它在前向传播期间保持输入不变,并在反向传播期间通过乘以负标量来反转梯度。

之后文章详细介绍了在深度体系结构中提出的域域适应方法,并给出了在传统深度学习图像数据集(MNIST、SVHN、OFFICE)上的结果。

2.related work

近年来,许多域适应方法相继提出,其中很多方法通过匹配源域和目标域中的特征分布来执行无监督的域域适应。有些方法将源域的样本重新加权(Borgwardt et al., 2006; Huang et al., 2006; Gong et al., 2013),有些则利用一个显示的特征空间的变换来将源域映射到目标域((Pan et al., 2011; Gopalan et al., 2011; Baktashmotlagh et al., 2013)。

当一些方法进行两个域分布的匹配时,重点是要使用高效的策略来衡量源域与目标域分布的差异。其中一个流行的选择是在再生核希尔伯特空间中匹配分布均值,在每个分布中匹配主轴==(?)==

作者的方法也是通过匹配特征空间的分布来执行无监督下的域适应,然而分布的匹配是通过修改特征本身的表示实现的,而不是通过重新加权或几何变换来实现。此外,作者还使用一个辨别分类器,基于分布的可分性来测量分布之间的差异。(?)

还有一些方法通过训练分布的逐渐变化来执行从源域到目标域的逐渐过渡(Gopalan et al., 2011; Gong et al., 2012)。在这些方法中,(S. Chopra & Gopalan,2013)通过深度自动编码器序列的分层训练以“深度”的方式做到这一点,同时用目标域样本逐渐替换源域样本。其中方法中的分类器在单独的步骤中使用由自动编码器学习的特征表示来学习训练。

而作者的方法集特征学习、领域域适应和分类器学习于一体,在一个统一的体系结构中,执行单一的反向传播算法。

3.Deep Domain Adaptation

3.1The model

作者使用 x ∈ X x \in X xX来表示输入的样本,其中 X X X表示输入空间;对应样本的标签使用 y ∈ Y y\in Y yY表示, Y Y Y表示标签空间。作者假设 Y Y Y是一个有限集 Y = { 1 , 2 , . . . , L } Y=\{1,2,...,L\} Y={ 1,2,...,L},并假设在 X ⊗ Y X\otimes Y XY中存在源域的样本分布 S ( x , y ) S(x,y) S(x,y) 与目标域的样本分布 T ( x , y ) T(x,y) T(x,y),两个分布都未知且不同。

作者的最终目标就是为目标域分布中的样本x分配标签y。在训练中,我们可以接触到大量边缘分布不同( S ( x ) ≠ T ( x ) S(x) \ne T(x) S(x)=T(x))的源域样本与目标域样本,其中我们使用一个二元变量 d i d_i di来表示该样本来自源域的分布( d i = 0 d_i=0 di=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值