连续时间信号的离散时间处理

先看一下连续时间信号经过采样之后发生了什么事情

归一化数字角频率的解释和注意

假设连续时间信号为 x ( t ) = c o s ( 2 π f a t ) x(t) = cos(2\pi f_at) x(t)=cos(2πfat),以 f s f_s fs的频率进行采样之后得到的离散时间信号记为 x [ n ] = x ( n T s ) = c o s ( 2 π f a / f s n ) x[n] = x(nT_s) =cos(2\pi f_a/f_sn) x[n]=x(nTs)=cos(2πfa/fsn)。 这里的 f a / f s f_a/f_s fa/fs就是离散时间信号的角频率,它是一个归一化之后的频率值(归一化数字角频率),之所以叫归一化,是因为离散时间信号的角频率值是相对于采样频率的归一化。也就是说对于不同频率的连续时间信号,当以不同的采样频率进行采样的时候,得到的归一化角频率可能是相同的。下面以一个例子来说明:
有两个连续时间信号, x 0 ( t ) = c o s ( 2 π 1000 t ) x_0(t) = cos(2\pi 1000t) x0(t)=cos(2π1000t) x 1 ( t ) = c o s ( 2 π 2000 t ) x_1(t) = cos(2\pi 2000t) x1(t)=cos(2π2000t)对这两个信号分别以采样频率 3000 3000 3000 6000 6000 6000进行采样,所得的离散时间信号都是 c o s ( 2 π 1 3 n ) cos(2\pi \frac{1}{3}n) cos(2π31n)
下面是matlab的仿真结果(matlab仿真代码见文末):
在这里插入图片描述
在这里插入图片描述从上面两张图中可以看到,确实如果对不同的连续时间信号,采用不同的采样频率进行采样的话,可能会产生同一个离散时间序列,所以对于一个由连续时间信号进行采样得到的信号而言,采样频率是必须要明确的条件。

将连续时间信号进行采样得到的离散时间信号的频谱

先从理论上来看一下应该是怎样的
首先假设一个连续时间信号 x ( t ) x(t) x(t),其频谱为 x ( j w ) x(jw) x(jw),然后将这个信号和周期冲击函数进行相乘,得:
x n ( t ) = x ( t ) × ∑ k = − ∞ ∞ σ ( t − k T s ) x_n(t) = x(t)\times\sum_{k=-\infty}^{\infty}\sigma(t-kT_s) xn(t)=x(t)×k=σ(tkTs),这里得 T s T_s Ts就是采样周期,注意,现在这个信号还是一个连续时间的信号,而不是离散时间的信号,所以对这个信号采用连续时间傅里叶变换:
对于后面的周期冲击串,采用周期信号的傅里叶变换,可以得到周期冲击串的傅里叶变换为:
2 π T s ∑ k = − ∞ ∞ σ ( w − k w s ) \frac{2\pi}{T_s}\sum_{k=-\infty}^{\infty}\sigma(w-kw_s) Ts2πk=σ(wkws),由时域乘积等于频域卷积的性质可得, x n ( t ) x_n(t) xn(t)的傅里叶变换为: 1 T s ∑ k = − ∞ ∞ x ( j ( w − k w s ) ) \frac{1}{T_s}\sum_{k=-\infty}^{\infty}x(j(w-kw_s)) Ts1k=x(j(wkws)),可以得到是原信号的频谱在频域上的周期延拓,并乘以一个常数。当然就行前面所说的,之前的讨论都是基于连续时间的傅里叶变换,那么如何利用这个得到的连续时间采样函数来得到离散时间信号的傅里叶变换呢?简单来说就是变量代换:
x [ n ] = x n ( t ) ∣ t = n T s x[n] = x_n(t)|_{t = nT_s} x[n]=xn(t)t=nTs,做离散时间傅里叶变换的: x ( e j w ) = ∑ n = − ∞ ∞ x [ n ] × e − j w n x(e^{jw}) = \sum_{n=-\infty}^{\infty}x[n]\times e^{-jwn} x(ejw)=n=x[n]×ejwn,观察 x n ( t ) x_n(t) xn(t)的傅里叶变换: x ( j Ω ) = ∫ − ∞ ∞ x n ( t ) × e − j Ω t d t = ∑ k = − ∞ ∞ x ( k T s ) ∫ − ∞ ∞ × σ ( t − k T s ) × e − j Ω t d t = ∑ k = − ∞ ∞ x ( k T s ) e − j k Ω T s x(j\Omega) = \int_{-\infty}^{\infty}x_n(t)\times e^{-j\Omega t}dt \\ = \sum_{k=-\infty}^{\infty}x(kT_s)\int_{-\infty}^{\infty}\times\sigma(t-kT_s)\times e^{-j\Omega t}dt \\ = \sum_{k=-\infty}^{\infty}x(kT_s)e^{-jk\Omega T_s} x(jΩ)=xn(t)×ejΩtdt=k=x(kTs)×σ(tkTs)×ejΩtdt=k=x(kTs)ejkΩTs,由于 x [ n ] = x ( n T s ) x[n] = x(nT_s) x[n]=x(nTs)则可得: x ( e j w ) = x ( j ω / T s ) x(e^{jw}) = x(j\omega/T_s) x(ejw)=x(jω/Ts)
其实从上面的分析中可以得到两点:

  1. 对信号进行采样的时候,采样频率要大于(等于只在特定的情况下成立)信号最高频率的两倍,这也就是大名鼎鼎的奈奎斯特采样定理。
  2. 在满足麦奎斯特采样定理的条件下,离散时间信号的频谱的最高频在 π \pi π附近。
    第一点从信号的频谱图上很容易看出来:
    在这里插入图片描述
    如果要是采样之后的信号不发生混叠,就需要 w s w_s ws的值大于信号最高频的两倍,方便以后的经过一个低通滤波器之后来会恢复出原始信号。
    对于第二点,当信号满足奈奎斯特采样定理的时候, x ( j ( w / T s ) ) x(j(w/T_s)) x(j(w/Ts)) w / T s ≤ 2 π × f s 2 w/T_s\leq 2\pi \times \frac{f_s}{2} w/Ts2π×2fs则可得 w ≤ π w\leq \pi wπ
    下面是对矩形脉冲信号的离散化频谱对比
    在这里插入图片描述
    在这里插入图片描述
    从图中可以和之前推导的两点进行对应
  • 进行离散化之后的信号的频谱的幅度值是原连续时间信号的频谱含有 f s f_s fs倍。
  • 离散化之后的信号的频谱是原信号频谱的周期延拓。

我也需要点积分下东西,所以最后一个matlab程序就放在下载中了,对程序有疑问的可以留言评论。下载地址

%连续时间信号为x_0(t) = cos(2*pi*f_0*t)
%             x_1(t) = cos(2*pi*f_1*t)
%f_0 = 1000;
clear;

f_0 = 1000;
fs = 3000;
T = 1/f_0;
T_total = 2*T;

N = 6;
t_0 = 0 : 1/(10*fs) : T_total;
n0 = 0 : N-1;
n_0 = n0/fs;
x_0_t = cos(2*pi*f_0*t_0);
x_0_n = cos(2*pi*f_0*n_0);
figure;
plot(t_0, x_0_t);
hold on;
stem(n_0, x_0_n);

f_1 = 2000;
fs = 6000;
T = 1/f_1;
t_1 = 0 : 1/(10*fs) : T_total;
n1 = 0 : N-1;
n_1 = n1/fs;
x_1_t = cos(2*pi*f_1*t_1);
x_1_n = cos(2*pi*f_1*n_1);
figure;
plot(t_1, x_1_t);
hold on;
stem(n_1, x_1_n);
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

able陈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值