Gerapy分布式爬虫管理框架

Gerapy分布式爬虫管理框架

  • 介绍:

Gerapy 是一款分布式爬虫管理框架,支持 Python 3,基于 Scrapy、Scrapyd、Scrapyd-Client、Scrapy-Redis、Scrapyd-API、Scrapy-Splash、Jinjia2、Django、Vue.js 开发。

 

  • gerapy的初始化配置:
  1. 安装gerapy框架。

$ pip install gerapy

 

  1. 检查gerapy是否可用。

$ gerapy

  1. 初始化gerapy,生成gerapy框架的工作目录。(在哪初始化,工作目录就创建在哪。初始化完成,进入gerapy文件夹,会有一个projects文件夹。)

$ gerapy init

 

  1. 先进入gerapy目录,再执行gerapy数据库的初始化,建立相关的数据库表。

$ cd gerapy

$ gerapy migrate

 

  1. 在gerapy目录下,启动gerapy服务,默认在8000端口。

$ gerapy runserver

 

  1. 打开浏览器,输入:http://localhost:8000,可以看到 Gerapy 的主界面。

 

  1. 完成以上步骤,说明gerapy初始化成功了。但是现在还没有添加主机和项目,所有的主机数量和项目数量都是0。

 

 

三、配置gerapy的主机

1. 点击左侧 Clients 选项卡,即主机管理页面,添加我们的 Scrapyd 远程服务,点击右上角的创建按钮即可添加我们需要管理的 Scrapyd 服务。

  1. 在cmd中,开启scrapyd服务。(如果scrapyd在远程服务器上已经部署成功了,那么是不需要再次进行开启的。一般远程服务器上的scrapyd会一直保持运行状态。)
  2. 再次刷新主机管理,scrapyd的连接状态变成normal即可。

四、在gerapy中部署爬虫项目

1. 点击左侧的 Projects ,即项目管理选项。

 

  1. 将自己的爬虫项目,拷贝到gerapy目录下的projects目录下。

 

  1. 刷新浏览器页面,我们便可以看到 Gerapy 检测到了这个项目。

 

  1. 点击部署按钮进行打包和部署,在右下角我们可以输入打包时的描述信息,类似于 Git 的 commit 信息,然后点击打包按钮,即可发现 Gerapy 会提示打包成功,同时在左侧显示打包的结果和打包名称。

 

  1. 开始打包。

 

  1. 打包完成以后,开始将爬虫项目部署到scrapyd服务上。

  • 开始调度爬虫,检测爬虫的运行状态。
  1. 部署完毕之后就可以回到 “主机管理”页面进行任务调度。

 

 

 

  1. 选择要运行的爬虫项目。

 

  1. 查看运行结果。

 

 

Cola是一个分布式爬虫框架,用户只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。pip install pyyaml安装下载或者用git clone源码,假设在目录/to/pth/cola,将该路径添加到Python path中。一种简单的方法是在site-packages中添加pth文件。site-packages因系统而异,如果是windows,假设python 装在C:\python27,那么就是C:\python27\Lib\site-packages;如果是linux,那么应该是/usr/local /lib/pythonX.X/dist-packages。在site-packages下新建一个cola.pth文件,里面写上路径:/to/path/cola。Cola目前自带了若干个爬虫,在项目根目录下的contrib中。下面就wiki为例,分别说明如何在单机和分布式环境下运行。依赖无论是维基百科还是新浪微博的实现,数据都存放在MongoDB中,所以要确保MongoDB的安装。在wiki下的wiki.yaml和weibo下的weibo.yaml中可以配置MongoDB的主机和端口。维基百科和新浪微博实现依赖于下面的几个包:mechanizepython-dateutilBeautifulSoup4mongoenginersa(仅新浪微博需要)可以使用pip或者easy_install来安装。单机模式单机模式非常简单,只需运行contrib/wiki/__init__.py即可。cd /to/path/cola/contrib/wiki python __init__.py要运行新浪微博的爬虫,需要在weibo.yaml中配置登录的用户名和密码。这里要注意,要保证这个用户名和密码在登录时不需要验证码。停止则需运行stop.py,注意不能通过直接杀死进程来停止,否则会导致cola非法关闭。 如果非法关闭,确保cola不在运行的情况下,则可以运行stop.py来恢复。但无论如何,都不推荐非法关闭,否则可能遇到不可预知的错误。python stop.py分布式模式首先需要启动cola master和cola workers。分别运行根目录下bin中的start_master.py和start_worker.py启动cola master:cd /to/path/cola python bin/start_master.py --data /my/path/data如果不指定--data,那么数据文件会放置在项目根目录下的data文件夹中。启动cola worker:python bin/start_worker.py --master <master ip address> --data /my/path/data--data选项同master。如果不指定master,会询问是否连接到本机master,输入yes连接。最后使用bin下的coca.py来运行指定的Cola job:python bin/coca.py -m <master ip address> -runLocalJob /to/path/cola/contrib/wiki-runLocalJob选项是要运行的job所在文件夹的绝对路径。输入命令后,该job会被提交到Cola集群来运行。停止Cola Job或集群停止整个集群,则可以运行:python bin/coca.py -m <master ip address> -stopAll而停止一个Job,则需要查询得到Job的名称:python bin/coca.py -m <master ip address> -showRunningJobsNames得到名称后,再运行:python bin/coca.py -m <master ip address> -stopRunningJobByName <job name>基于Cola实现的爬虫基于Cola实现的爬虫位于contrib/目录下。目前实现了四个爬虫:wiki:维基百科。weibo:新浪微博爬虫。从初始用户出发,然后是其关注和粉丝,依次类推,抓取指定个数的新浪微博用户的微博、个人信息、关注和粉丝。其中,用户微博只获取了内容、赞的个数、转发和评论的个数等等,而没有具体去获取此微博被转发和评论的内容。generic(unstable):通用爬虫,只需配置,而无需修改代码。目前Cola实现了一个抽取器(cola/core /extractor),能够从网页正文中自动抽取主要内容,即去除类似边栏和底脚等内容。但是,此抽取器目前准确度还不够,效率也不够高,所以需要谨慎 使用。weibosearch(unstable):新浪微博搜索的爬虫。这个爬虫使用 cola.core.opener.SpynnerOpener,基于spynner实现了一个Opener能够执行JavaScript和Ajax代 码。目前这个爬虫存在的问题是:新浪微博可能会将其识别成机器人,因此有可能会让输入验证码。wiki和weibo之前有所提及。主要说明generic和weibosearch。对于generic来说,主要要修改的就是配置文件:job:   patterns:     - regex: http://blog.sina.com.cn/$       name: home       store: no       extract: no     - regex: http://blog.sina.com.cn/s/blog_.       name: article       store: yes       extract: yes其中,regex表示要匹配的url的正则表达式;name是正则匹配的名称;store为yes时是存储这个网页,no为不存储;extract表示是否自动抽取网页正文,只有当store为yes的时候,extract才有作用。对于weibosearch,其使用了spynner来执行JavaScript和Ajax代码。所以需要确保以下依赖的安装:PyQt4(>=4.4.3)spynner如果你觉得可以基于cola实现一个比较通用的第三方爬虫,比如说腾讯微博等等,欢迎将此爬虫提交到contrib/中。编写自定义Cola Job见wiki编写自定义Cola Job。架构和原理在Cola集群里,当一个任务被提交的时候,Cola Master和Worker会分别启动JobMaster和JobWorker。对于一个Cola Job,当JobWorker启动完成后,会通知JobMaster,JobMaster等待所有JobWorker启动完成后开始运行Job。在一个 Cola Job启动时,会启动一个消息队列(Message Queue,主要操作是put和get,worker抓取到的对象会被put到队列中,而要抓取新的对象时,只要从队列中取即可),每个 JobWorker上都存在消息队列节点,同时会有一个去重模块(bloom filter实现)。Cola还不够稳定,目前会处于持续改进的状态。且Cola还没有在较大规模的集群上测试,但是接下来我会把Cola应用到新项目中,并逐步完善。也希望大家也能给我反馈,并帮助改进。Roadmap0.1版本正式推出前不会再增加新的功能了,主要目标让Cola更加稳定,并且提高cola/core/extractor的性能和精确度,完善contrib/generic和contrib/weibosearch。0.2版本计划:实现一个web接口,可以查看运行的cola job以及运行情况简化安装,支持easy_install或者pip安装。增加解决依赖库安装的机制。0.3版本计划:增加一个统一持久化抽象,支持保存到关系型数据库,MongoDB,文件系统,HDFS等等。0.4版本计划:支持Python 3 标签:Cola
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值