【C++】归并排序的理解-剑指offer51:计数数组中的逆序对和148:排序链表

这篇博客介绍了归并排序的基本思想,并展示了如何利用归并排序来计算数组中的逆序对数量以及对链表进行排序。在计算逆序对时,通过比较归并过程中元素的大小关系,动态统计逆序对数量。对于链表排序,通过两次递归调用归并排序分别处理链表的左右部分,然后使用归并操作将已排序的子链表合并。此外,还提到了链表排序的快速排序版本。

0x00 归并排序的基本思想:

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。其过程展示图如下(这里以数组[8, 4, 5, 7, 1, 3, 6, 2]为例子):
在这里插入图片描述
最后一部分的“治”的详细过程如下,即[4,5,7,8] 与 [1,2,3,6] 二者之间的合并;
在这里插入图片描述

上图参考来自于:图解排序算法(四)之归并排序

0x01 利用归并排序来计算数组中逆序对个数:

class Solution {
   
   
public:
    // 利用归并排序的性质来判断中间过程的大小比较,从而计算其中的逆序对的个数
    // 归并排序的平均之间复杂度是O(nlogn)
    
    int revNum = 0;  // 保存逆序对的个数
    vector<int> tmp; // 定一个临时数组
    int reversePairs(vector<int>& nums) {
   
   
        int nLength = nums.size();
        tmp.resize(nLength);
        mergeSort(nums, 0, nLength-1);
        return revNum;
    }
    void mergeSort(vector<int> &nums, int left, int right) {
   
   
        if (left>=right) return;
        int mid = left+(right-left)/2;
        // 左拆分
        mergeSort(nums, left, mid);
        // 右拆分
        mergeSort(nums, mid+1, right);
        // 合并相邻两部分
        merge(nums
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郝同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值