08-图8 How Long Does It Take (25分)

题目链接

关键路径问题,也是拓扑排序的变形,只用额外增加一个数组记录每个任务的最晚完成时间即可。
对于每个节点(activity),我们需要记录他们的入度和最晚完成时间,入度为0的结点可执行,最晚时间的更新按最大来

具体解释在代码中:

#include<iostream>
#include<vector>
#include<queue>

#define MAX 10000000

using namespace std;

int main()
{
	int n, m, s, e, l;
	cin >> n >> m;
	vector<vector<int>> activitylink(n, vector<int>(n, -1));	//记录是否连通
	vector<int> indegree(n);	//记录入度
	vector<int> latest(n);		//记录最晚完成时间
	vector<bool> isused(n, false);	//记录节点是否被考虑
	queue<int> Q;
	for (int i = 0; i < m; i++)	//数据读入
	{
		cin >> s >> e >> l;
		activitylink[s][e] = l;
		indegree[e]++;
	}

	int act = -1;
	for(int i = 0;i<n;i++)		//初始时将所有入度为0的点入队
		if (indegree[i] == 0)
		{
			Q.push(i);	
		}
	if (Q.empty())	//如果队列空,代表没有入度为0的节点,即图是个环
	{
		cout << "Impossible" << endl;
		return 0;
	}
	else
	{
		while (!Q.empty())
		{
			act = Q.front();	//取出一个节点
			Q.pop();
			isused[act] = true;
			for (int i = 0; i < n; i++)
			{
				if (activitylink[act][i] != -1 && !isused[i])	//对与该节点连通的节点
				{
					indegree[i]--;	//入度减1
					if (indegree[i] == 0)	//减后入度为0即入队
						Q.push(i);
					//与当前节点连通的节点,计算经过当前节点所需时间与原时间,取大者
					if (latest[act] + activitylink[act][i] > latest[i])	
						latest[i] = latest[act] + activitylink[act][i];
				}
			}
		}
	}

	for(int i = 0;i<n;i++)
		if (!isused[i])	//有环
		{
			cout << "Impossible" << endl;
			return 0;
		}
	int completetime = 0;
	for (int i = 0; i < n; i++)	//最大值为最少需要的时间
	{
		if (latest[i] > completetime)
			completetime = latest[i];
	}
	cout << completetime << endl;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值