pytorch入门12:非线性激活层的使用

import torch
import torchvision
from torch import nn

# input = torch.tensor([[1,-0.5],
#                       [-1,3]],dtype=torch.float32)
#
# #print(input.shape)
#
# input = torch.reshape(input,(-1,1,2,2))
# #print(input.shape)
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('',train=False,download=False,transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset,batch_size=64)





class Zkl(nn.Module):
    def __init__(self):
        super(Zkl, self).__init__()
        self.nn_relu = nn.ReLU(inplace = True)  # 这里的inplace代表的意思就是生成的值是否对原变量的进行替换
        self.nn_sigmod = nn.Sigmoid()

    def forward(self,input):
        output = self.nn_sigmod(input)
        return output

zkl = Zkl()
writer = SummaryWriter('nn_sigmoid_log')
step = 0
for data in dataloader:
    imgs,targets = data
    writer.add_images('relu_input',imgs,step)
    output = zkl(imgs)
    writer.add_images('relu_output',output,step)
    step += 1

writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值