目录
非线性激活层Non-linear Activations (other)
非线性激活层Non-linear Activations
按元素应用函数ELU | |
按元素应用函数Hardshrnk | |
按元素应用函数Hardsigmoid | |
按元素应用函数Hardtanh | |
按元素应用函数Hardswish | |
按元素应用函数LeakyReLU | |
按元素应用函数LogSigmoid | |
按元素应用函数MultiheadAttention | |
按元素应用函数PReLU | |
按元素应用函数ReLU | |
按元素应用函数ReLU6 | |
按元素应用函数RReLU | |
按元素应用函数SELU | |
按元素应用函数CELU | |
按元素应用高斯误差线性单位函数GELU | |
按元素应用函数Sigmoid | |
按元素应用Sigmoid线性单位(SiLU)函数SiLU | |
按元素应用函数Mish | |
按元素应用函数Softplus | |
按元素应用函数Softshrink | |
按元素应用函数softsign | |
按元素应用函数Tanh | |
按元素应用函数Tanshrink | |
按元素应用函数Threshold | |
按元素应用函数GLU |
非线性激活层Non-linear Activations (other)
将Softmin函数应用于n维输入张量,对其进行重新缩放,使n维输出张量的元素位于[0,1]范围内,且总和为1。 | |
将Softmax函数应用于n维输入张量,对其进行重新缩放,使n维输出张量的元素位于[0,1]范围内,且总和为1。 | |
将SoftMax覆盖要素应用于每个空间位置。 | |
对softmax函数再取对数 | |
如下文中所述的有效softmax近似值Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. |
归一化层Normalization Layers
循环神经Recurrent Layers
将具有tanh或ReLU非线性激活层的多层Elman RNN应用于输入序列。 | |
将多层长短时记忆(LSTM)RNN应用于输入序列。 | |
将多层门控循环单元(GRU)RNN应用于输入序列。 | |
具有tanh或ReLU非线性层的Elman RNN单元。 | |
长短时记忆(LSTM)单元。 | |
门控循环单元(GRU)。 |