keras---训练过程的可视化

在训练深度模型的时候,Keras提供了对训练历史的默认回调方法。在深度学习的训练过程中,默认回调方法之一是history回调,它记录每个epoch的训练指标,包括损失和准确度。

训练过程的信息可以从fit的返回值获取,可以都存起来,来画图,可以很方便的看到模型的训练情况:

  • 模型在epoch的收敛速度(斜率)
  • 模型是否已经收敛(该线是否平滑收敛)
  • 模型是否过拟合(验证线的拐点)

下面使用莺尾花数据集,来展示以下信息:

  • 训练数据和评估数据在各epoch的准确度及损失情况
from sklearn import datasets
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from matplotlib import pyplot as plt


# 导入数据
dataset = datasets.load_iris()

x = dataset.data
Y = dataset.target

# 将标签转换为分类 one-hot 编码
Y_labels = to_categorical(Y, num_classes=3)

# 设定随机种子
seed = 7
np.random.seed(seed)
# 构建模型函数
def create_model(optimizer='rmsprop', init='glorot_uniform'):
    # 构建模型
    model = Sequential()
    model.add(Dense(units=4, activation='relu', input_dim=4, kernel_initializer=init))
    model.add(Dense(units=6, activation='relu', kernel_initializer=init))
    model.add(Dense(units=3, activation='softmax', kernel_initializer=init))

    # 编译模型
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

    return model

# 构建模型
model = create_model()

history = model.fit(x, Y_labels, validation_split=0.2, epochs=200, batch_size=5, verbose=0)

# 评估模型
scores = model.evaluate(x, Y_labels, verbose=0)
print('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))

# Hisotry列表
print(history.history.keys())

# accuracy的历史
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()

# loss的历史
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WGS.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值