【环境配置】多cuda版本多pytorch版本配置

【环境配置】多cuda版本多pytorch版本使用。

CUDA 11.3+pytorch 1.12.1

1.安装CUDA11.3

2.安装cudnn版本。注意,这里使用安装到CUDA文件夹的方式。
安装cudnn 到cuda-11.3文件夹:

1.下载cudnn的压缩包。在 cudnn下载中选择for 11.x。下载时选择:Local Installer for Linux x86_64 (Tar)
2.解压:
tar cudnn-10.1-linux-x64-v8.0.4.30.tgz #解压
3.拷贝到cuda文件夹
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.3/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda-11.3/lib64/libcudnn*

3.安装pytorch 1.12.1。
写入cuda路径到YOUR_USER/bashsrc:

sudo vim ~
### 配置 PyTorch 使用 CUDA 12.6 为了使 PyTorch 能够使用 CUDA 12.6,在当前情况下,官方并没有直接提供针对 CUDA 12.6 的预编译二进制文件。不过可以采取一种间接的方法来实现这一目标。具体来说,可以选择安装与现有 CUDA 版本向下兼容的 cu118 来满足需求[^1]。 考虑到 PyTorch 官方网站可能存在的下载速度问题,建议采用国内镜像站点作为索引 URL 加速获取所需组件。对于 Python 环境中的依赖管理工具 `pip`,其具备依据本地解释器版本自动匹配合适库的能力。因此可以直接通过命令行执行如下指令完成安装: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118/ ``` 上述操作适用于大数常规场景下的快速部署;然而如果追求完全一致于特定环境设置,则需手动指定确切版本号以及对应的 wheel 文件地址进行精确控制。例如,当希望确保 TensorFlow GPU 和 PyTorch 同时运行在同一套 CUDA/CuDNN 上时,应该按照已验证成功的组合来进行配置[^3]。此时应先确认操作系统平台(此处假设为 Windows),接着访问 [PyTorch 官方资源页面](https://download.pytorch.org/whl/) 寻找并下载适合该系统的 whl 文件,最后利用 pip 执行离线安装: ```bash pip install C:\path\to\torch-2.5.1+cu124-cp312-cp312-win_amd64.whl pip install C:\path\to\torchaudio-2.5.1+cu124-cp312-cp312-win_amd64.whl pip install C:\path\to\torchvision-0.20.1+cu124-cp312-cp312-win_amd64.whl ``` 需要注意的是这里使用的轮子文件均带有 "+cu124" 标记,意味着它们被构建用于 CUDA 12.4 或者更低版本,这同样能够良好适配更高版本CUDA 12.6 的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值