【题目描述】
原题来自:SCOI 2009 题目
Windy 定义了一种 Windy 数:不含前导零且相邻两个数字之差至少为 2 的正整数被称为 Windy 数。
Windy 想知道,在 A 和 B 之间,包括 A 和 B,总共有多少个 Windy 数?
【输入格式】
一行两个数,分别为 A,B。
【输出格式】
输出一个整数,表示答案。
【样例输入 1】
1 10
【样例输出 1】
9
【样例输入 2】
25 50
【样例输出 2】
20
【数据范围与提示】
20% 的数据,满足 1≤A≤B≤10^6
100% 的数据,满足 1≤A≤B≤2×10^9
思路:这道题的话,跟上一题数字游戏有很大的思路上的相似度,预处理f是差不多的,思路也是一位一位去寻找,一位一位的去判断是否符合题目的条件,如果符合,就记录当前的这一个答案,最后再讲方案数增加,还有就是依旧要从最高位开始。
f[i][j]表示的是以i为最高位的j位数的windy数有多少个,预处理f就是一样的,也是继承数位,改变了的就是sum1,sum2和alen,blen的初始化的范围,不再是0,因为要使后面的0~9的单位数与前面的差大于等于2,所以只能是11或者99,因为如果你后面是0~9都不会使差小于2,11和9的差就刚好是2,99就更不用说了。sum1和sum2的初始化定义就是要将前导零全部去掉,才能进行后面的计算。
然后一定要从最高位开始,而且这道题有一个特殊,就是0可以用,就是单位数的时候,0这种情况是成立的,然后思路就是这样,记住,对于找数这样的题目,标志就是
一位一位的找,f[i][j]表示的是以i为最高位的j位数的符合条件的数有多少个
【代码实现:x>0和y>0是一样的,就是alen和blen,a数组和b数组有一点转化而已,但是我注释也写了两遍,写完整加深印象】
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
int f[110][110];//f[i][j]表示以i为最高位的j位windy数有多少个
int a[110],b[110],alen,blen;//alen表示x范围的最高位,blen表示y范围的最高位,a[i]表示存储x范围这一个位数,b[i]表示存储y范围这一个位数
void dfs()//预处理f
{
for(int i=0;i<=9;i++) f[i][1]=1;//一位数的情况,0~9肯定是非降序数,0在这里是有效的
for(int i=2;i<=10;i++)//2^31是十位数,表示数位
{
for(int j=1;j<=10;j++) f[10][i]+=f[j][i-1];//以 前导零作为开头的j位数,记为f[10][i]; //10 表示前导零
for(int j=0;j<=9;j++)//不是前导零的情况
{
for(int k=0;k<=9;k++)//正常的0~9,就是说受到相邻数大于等于2的限制的影响
{
if(abs(k-j)>=2) f[j][i]+=f[k][i-1];//如果绝对值成立符合条件,就加上
}
}
}
}
int main()
{
dfs();//先预处理
long long x,y,sum1,sum2;
scanf("%lld%lld",&x,&y);
x--;//先将范围减少一个
alen=0; blen=0;//初始化
while(x>0)//范围等于0的时候就不存在成立的数
{
a[++alen]=x%10;
x/=10;
}//这一步就是分出每一位 //把x的每一位分出来放到a数组里面
sum1=f[10][alen];//我们这里把前导零的alen位数弄走
//比如说我求0~30000,我们就先弄走0~9999; 求0~500,就先弄走0~99
a[alen+1]=99; //a[alen+1]=11;
//这里是为了防止后面的a[alen]与a[alen+1]的差不能大于等于2,也因为如果是11或者99,无论后面填0~9的任意一个数,差都大于等于2
for(int i=alen;i>=1;i--)//从最高位开始循环
{
//sum1+=f[10][i];
for(int j=0;j<a[i];j++)//这里保证不会超出范围
{
if((i!=alen || j!=0) && abs(a[i+1]-j)>=2)//alen表示首位,因为是alen记录最高位,而且是从最高位开始循环,j也表示第一位
//如果首位不为0,而且相邻数的绝对值大于等于2,就满足条件,可以进行下一步
{
sum1+=f[j][i];//记录到答案里面
}
}
if(abs(a[i]-a[i+1])<2) break;//如果当前这两位的差的绝对值小于2,因为我后面要搜的数是确定了这一位是a[i]的
//因此就不符合条件了,这里放在后面判断是因为可能出现450这样的,5-4<2,但是400~429还是要记录的
if(i==1) sum1++;//还是搜索到最后一位,就增加一种答案
}
while(y>0)//范围等于0的时候就不存在成立的数
{
b[++blen]=y%10;
y/=10;
}//这一步就是分出每一位 //把y的每一位分出来放到b数组里面
sum2=f[10][blen];//我们这里把前导零的blen位数弄走
//比如说我求0~30000,我们就先弄走0~9999; 求0~500,就先弄走0~99
b[blen+1]=99; //b[blen+1]=11;
//这里是为了防止后面的b[blen]与b[blen+1]的差不能大于等于2,也因为如果是11或者99,无论后面填0~9的任意一个数,差都大于等于2
for(int i=blen;i>=1;i--)//从最高位开始循环
{
//sum2+=f[10][i];
for(int j=0;j<b[i];j++)//这里保证不会超出范围
{
if((i!=blen || j!=0) && abs(b[i+1]-j)>=2)//alen表示首位,因为是alen记录最高位,而且是从最高位开始循环,j也表示第一位
//如果首位不为0,而且相邻数的绝对值大于等于2,就满足条件,可以进行下一步
{
sum2+=f[j][i];//记录到答案里面
}
}
if(abs(b[i]-b[i+1])<2) break;//如果当前这两位的差的绝对值小于2,因为我后面要搜的数是确定了这一位是a[i]的
//因此就不符合条件了,这里放在后面判断是因为可能出现450这样的,5-4<2,但是400~429还是要记录的
if(i==1) sum2++;//还是搜索到最后一位,就增加一种答案
}
printf("%lld\n",sum2-sum1);//最后输出(0~y)-(0~x),也就是x~y的区间的答案
return 0;
}
这道题跟上一题来比较,多了一些小细节要注意,难度系数就是:6.5