【题目描述】
原题来自:HAOI 2008
有 n 个小朋友坐成一圈,每人有 ai 颗糖果。每人只能给左右两人传递糖果。每人每次传递一颗糖果的代价为 1 。求使所有人获得均等糖果的最小代价。
【输入格式】
第一行有一个整数 n ,表示小朋友个数;
在接下来 n 行中,每行一个整数 ai。
【输出格式】
输出使所有人获得均等糖果的最小代价。
【样例输入】
4
1
2
5
4
【样例输出】
4
【数据范围与提示】
对于 30% 的数据,n≤1000;
对于 100% 的数据,n≤106,保证答案可以用 64位有符号整数存储。
思路:有点内疚,这道题想了蛮久的,一直都没有搞清楚两两之间的差值应该怎么表示出来,后面才知道这个其实是一个方程,就是要求出每一个小朋友在传递糖果时的变化。
【推理过程】
首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2(假设C2=A2-ave,下面类似)
对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,绝对值的计算,不解释上代码。
[代码实现】
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
inline int read()//日常快读
{
char c=getchar();
ll x=0,f=1;
while(c<48 || c>57)
{
if(c=='-') f=-1;
c=getchar();
}
while(c>=48 && c<=57)
{
x=x*10+c-48;
c=getchar();
}
return x*f;
}
ll a[1110000],x[1110000];
int main()
{
int n; n=read();
ll sum=0;
for(int i=1;i<=n;i++)
{
a[i]=read();
sum+=a[i];
}
sum=sum/n;
for(int i=1;i<=n;i++)
{
x[i]=x[i-1]+sum-a[i];//两两之间的差
/*
这句话的意思就是:比如说
对于第一个小朋友,他给了第n个小朋友X1颗糖果,
还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,
所以最后还剩A1-X1+X2颗糖果。
根据题意,最后的糖果数量等于sum,
即得到了一个方程:A1-X1+X2=sum。
X2=sum+X1-A1
就是这个意思
所以我们就一直转化带入就好了
*/
}
sort(x+1,x+n+1);
ll k=x[(n+1)/2];//中位数使得绝对值最小
ll ans=0;
for(int i=1;i<=n;i++) ans+=abs(x[i]-k);//防止负数取绝对值
printf("%lld\n",ans);
return 0;
}