Beautiful Paintings

http://codeforces.com/problemset/problem/651/B

There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

Input

The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

Output

Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

Examples

Input

5
20 30 10 50 40

Output

4

Input

4
200 100 100 200

Output

2

Note

In the first sample, the optimal order is: 10, 20, 30, 40, 50.

In the second sample, the optimal order is: 100, 200, 100, 200.

仔细观察后,可以发现, the maximum possible number of neighbouring pairs 是n-max,max是数字出现的最大次数

#include <iostream>
#include<Cstring>
#include<Cstdio>
#include<algorithm>

using namespace std;

//n-max

int a[10000];
int d[10000];

int main()
{
    int n;
    int i,j,q=1;
    int cup,max=1;
    int k=1;

    scanf("%d",&n);
    for(i=1;i<=n;++i)
    {
        scanf("%d",&a[i]);
    }

    for(i=1;i<n;++i)
    {
        for(j=i+1;j<=n;++j)
        {
            if(a[i]>a[j]) cup=a[i],a[i]=a[j],a[j]=cup;
        }
    }
    for(i=1;i<n;)
    {
        for(j=i+1;j<=n;++j)
        {
            if(a[i]==a[j]) k++;
        }
        d[q++]=k;
        i=i+k;
        k=1;
    }
    for(i=1;;++i)
    {
        if(d[i]==0) break;
        if(max<d[i]) max=d[i];
    }

    cout<<n-max<<endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值