五、决策树

决策树

思想

  • 对特征进行节点划分,难点在于先选哪个特征,就引出信息熵的概念,也就是类似于权重,用于划分数据集

信息熵、信息增益

  • 描述系统的无序程度,系统越有序,熵越低
信息熵

在这里插入图片描述

  • 这个式子的优点:
    • 当概率平均的时候熵最大,以两种情况即n=2为例, p 1 = p 2 = 0.5 p_1=p_2=0.5 p1=p2=0.5,熵最大,图像如下,这也是以2为底的原因
      在这里插入图片描述
信息增益-ID3
  • 信息增益=信息熵(特征划分前)-信息熵(特征划分后)
    在这里插入图片描述
  • 切记:再往下的计算都基于上一次,选择信息增益最大的那个特征划分,第一步最大,后面越来越小。即使选的特征再烂,也不可能出现信息增益为负(信息熵函数的特性)
信息增益率-C4.5
  • 相当于信息增益的加权,平衡每个特征样本量的差距

基尼值与基尼系数-常用

基尼值Gini(D)

在这里插入图片描述

  • 基尼值越小,纯度越高
基尼系数-CART

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sNQ9PIVM-1569803799695)(en-resource://database/518:1)]

  • 总结:选择节点特征时,选择基尼系数最小的,即纯度最高的,即系数增益最大的,和信息熵差不多

剪枝

  • 决策树的剪枝分为先剪枝和后剪枝,后剪枝在sklearn中并未实现,前剪枝容易理解,就是在生成树的时候直接进行评判并剪枝;
  • 后剪枝则是在树完全生成后,即每个叶节点都是纯净的之后再进行剪枝。此时会遍历每个叶节点计算损失函数,比前剪枝要更加准确。

API和参数

sklearn.tree.DecisionTreeClassifier(criterion='gini', max_depth=None, random_state=None)
  • criterion:选择树的类型
    • 'gini’默认值:即CART算法
    • ‘entropy’:表示信息增益,即ID3树
  • min_samples_split:内部节点在划分的最小样本数,默认为2,10万左右的样本一般设为10
  • min_samples_leaf:叶子节点最小样本数,默认1,10万左右的样本一般设为5
  • max_depth:最大深度,适用于样本量和特征都多的时候
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值