CPU与GPU上检测pytorch是否安装成功

本文介绍了PyTorch的安装步骤,并提供了多种方法验证其是否安装成功,包括检查版本、创建张量、执行张量计算以及在GPU上的测试。此外,还通过加载预训练模型进行实例测试,确保PyTorch的正常运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python学习

python学习

0.安装pytorch

官方安装pytorch地址

1.验证pytorch已经安装成功

1.1确定pytorch版本

import torch
print(torch.__version__)

如果没有报错,同时输出了正确版本号,就说明PyTorch已经成功安装了。

1.2.测试pytorch基础功能

为了确保PyTorch基础功能正常工作,可以进行以下测试:
1.测试是否可以创建张量:

import torch
x = torch.Tensor(5, 3)
print(x)

如果没有报错,同时输出了5行3列的张量,就说明可以创建张量。
2.测试是否可以进行张量计算

import torch
x = torch.Tensor(5, 3)
y = torch.Tensor(3, 4)
z = torch.mm(x, y)
print(z)

如果没有报错,同时输出了5行4列的张量,就说明可以进行张量计算。
在这里插入图片描述

1.3.在GPU上测试pytorch

如果电脑有GPU支持,建议在GPU上测试PyTorch是否正常工作。测试代码如下:

import torch
if torch.cuda.is_available():
    x = torch.Tensor(5, 3).cuda()
    y = torch.Tensor(3, 4).cuda()
    z = torch.mm(x, y)
    print(z)

如果没有报错,同时输出了5行4列的张量,就说明PyTorch GPU版本也正常工作。

1.4使用实例代码测试

为了更加确认PyTorch是否正常工作,可以使用PyTorch官方提供的示例代码进行测试,例如以下代码:

import torch
import torchvision
model = torchvision.models.resnet18(pretrained=True)
model.eval()
x = torch.rand(1, 3, 224, 224)
y = model(x)

print(y)

如果没有报错,同时输出了正确的结果,就说明PyTorch正常工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值