python cuda torch验证是否成功安装,版本是否匹配

本文指导如何检查显卡型号、算力,以及根据显卡规格正确安装和验证PyTorch与CUDA的匹配性。内容包括查看显卡信息、选择合适的PyTorch版本、源码安装指南以及通过命令行工具确认CUDA和PyTorch的兼容性。
摘要由CSDN通过智能技术生成

1 、首先查看自己的显卡型号

根据nvcc-smi查到自己的显卡型号,如下图所示。在这里插入图片描述
本人的电脑显卡型号为:GeForce GT 730

2、查看显卡算力

可以通过以下链接查找
http://www.5ityx.com/cate100/155907.html
可以看到我的显卡算力是3.5

备注:你的显卡计算力必须保证在3.5以上。如果是3.5及以下,请下载pytorch 1.1,或1.2的版本。这是因为需要硬件和软件的配置相配才能使我们的GPU发挥它的功效。

(1)如果算力大于3.5,那么你可以从PyTorch官网下载对应版本的。也就是网上一搜便能找到的一键安装pytorch的方法。比如

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值