综合评价方法之秩和比法(RSR)

一、概念

秩和比法是一种将古典参数统计和近代非参数统计进结合,并融其各自优点于一身的统计分析方法,1988年由田风调教授提出,适合对行列表格的资料进行综合评价,也可应用于分类及计量资料的综合评价。

秩和比(RSR)指在多指标综合评价中,表中各评价对象 n 秩次的相对平均值(若评价指标权重不同,则需要指标乘以权重),是一个非参数计量,具有0-1区间连续变量的特征。

基本思想是在一个 n 行(n 评价对象)p 列(p 个评价指标)矩阵中,通过秩转换,获得无量纲的统计量RSR,以RSR值对评价对象的优劣进行排序或分档排序。

在综合评价中,秩和比的值能够包含所有评价指标的信息,显示出这些评价指标的综合水平,RSR值越大表明综合评价越优。

  • 优点:因为 RSR 只使用了数据的相对大小关系,而不真正运用数值本身,所以此方法综合性强,可以显示微小变动,对离群值不敏感;能够对各个评价对象进行排序分档,找出优劣,是做比较,找关系的有效手段;能够找出评价指标是否有独立性。
  • 缺点:通过秩替代原始指标值,会损失部分信息;不容易对各个指标进行恰当的编秩。

二、步骤

Step1:列出原始数据,一行代表一个评价对象,一列代表一个评价指标。
Step2:由原始数据进行计算秩值;
Step3:利用Step2的秩值,计算得到RSR值和RSR值排名;
Step4:列出RSR的分布表格情况并且得到Probit值;
Step5:计算回归方程;
Step6:进行排序,并且进行分档等级。

(1)列出原始数据表

根据评价的目的,选择适当的评价指标。使用专业知识区分指标是高优还是低优。一般高优指标是指效益型指标,即指标的数值越大越理想;低优指标就是成本型指标,即指标的数值越小越理想

有时,指标的属性要根据不同的研究目的加以确定,还有一些指标为不分高优与低优的指标。

列出原始数据表。假设有n个待评价样本,p项评价指标,形成原始指标数据矩阵:
X = ( x 11 . . . x 1 p ⋮ ⋱ ⋮ x n 1 ⋯ x n p ) X=\left( \begin{matrix} x_{11}& ...& x_{1p}\\ \vdots& \ddots& \vdots\\ x_{n1}& \cdots& x_{np}\\ \end{matrix} \right) X=x11xn1...x1pxnp

其中 X i j X_{ij} Xij 表示第 i 个样本第 j 项评价指标的数值。

例如:

GDP就业人数财政支出人均可支配收入
北京xxxxxxxx
上海xxxxxxxx
广州xxxxxxxx
深圳xxxxxxxx
成都xxxxxxxx
重庆xxxxxxxx
天津xxxxxxxx

(2)计算秩值

根据每一个具体的评价指标按其指标值的大小进行排序,得到秩次R,用秩次R来代替原来的评价指标值。

根据编秩结果建立各指标的秩次数据矩阵。
R = ( R 11 R 12 ⋯ R 1 p R 21 R 22 ⋯ R 2 p ⋮ ⋮ ⋮ R n 1 R n 2 ⋯ R n p ) R=\left( \begin{matrix} R_{11}& R_{12}& \cdots& R_{1p}\\ R_{21}& R_{22}& \cdots& R_{2p}\\ \vdots& \vdots& & \vdots\\ R_{n1}& R_{n2}& \cdots& R_{np}\\ \end{matrix} \right) R=R11R21Rn1R12R22Rn2R1pR2pRnp

R i j R_{ij} Rij:表示第 i 个样本第 j 项评价指标的秩次。

这里的秩可以理解成是一种顺序或者排序,它是根据原始数据的排序位置进行求解

例如:
高优指标j  [-0.81.1-24.2-3.1]

排序

[-3.1-2-0.81.14.2]3  4  2 5 1

编出每个指标各对象的秩,这是秩和比法运用成败的关键之一。编秩时,应充分体现专业要求,力求所编秩次无逻辑上的混乱。

编制方法:

共有两种方法,分别是整次法和非整次法;二者在于计算秩的时候公式不一样

  • 整秩法

高优指标从小到大编秩,低优指标从大到小编秩,同一指标数据相同者取平均值。

  • 非整秩法

对于高优指标: R i j = 1 + ( n − 1 ) X i j − X min ⁡ X max ⁡ − X min ⁡ R_{ij}=1+\left( n-1 \right) \frac{X_{ij}-X_{\min}}{X_{\max}-X_{\min}} Rij=1+(n1)XmaxXminXijXmin
对于低优指标:
R i j = 1 + ( n − 1 ) X max ⁡ − X i j X max ⁡ − X min ⁡ R_{ij}=1+\left( n-1 \right) \frac{X_{\max}-X_{ij}}{X_{\max}-X_{\min}} Rij=1+(n1)XmaxXminXmaxXij

其中 X max ⁡ = max ⁡ ( X 1 j , X 2 j , ⋯   , X n j ) , X min ⁡ = min ⁡ ( X 1 j , X 2 j , ⋯   , X n j ) X_{\max}=\max \left( X_{1j},X_{2j},\cdots ,X_{nj} \right) \text{,}X_{\min}=\min \left( X_{1j},X_{2j},\cdots ,X_{nj} \right) Xmax=max(X1j,X2j,,Xnj)Xmin=min(X1j,X2j,,Xnj)

一般使用整秩法

例如

在这里插入图片描述
均是高优指标,按从小到大编秩

在这里插入图片描述
在这里插入图片描述

(3)计算秩和比RSR值及排名

在一个 n 行( n 个评价对象)p 列( p 个评价指标)矩阵中,RSR的计算公式为:
R S R i = 1 n × p ∑ j = 1 p R i j RSR_i=\frac{1}{n\times p}\sum_{j=1}^p{R_{ij}} RSRi=n×p1j=1pRij

上式中 , i = 1 , 2 , ⋯   , n  ;  j = 1 , 2 , ⋯   , p i=1,2,\cdots ,n\ \text{;\ }j=1,2,\cdots ,p i=1,2,,n  j=1,2,,p R i j R_{ij} Rij 表示第 i 行 第 j 列元素的秩。

当个评价指标的权重不同时,计算加权秩和比为WRSR,其计算公式为:
W R S R i = 1 n ∑ j = 1 p W j R i j WRSR_i=\frac{1}{n}\sum_{j=1}^p{W_jR_{ij}} WRSRi=n1j=1pWjRij

上式中, W j W_j Wj 表示第 j 个评价指标的权重,满足 ∑ j = 1 p W j = 1 \sum_{j=1}^p{W_j}=1 j=1pWj=1

计算权重的方法有熵值法、变异系数法…等等

RSR值无量纲,最小值 R S R min ⁡ = 1 n RSR_{\min}=\frac{1}{n} RSRmin=n1;最大值 R S R max ⁡ = 1 RSR_{\max}=1 RSRmax=1

按RSR值对评价对象的优劣进行直接排序。

例子
这里引用RSR(秩和比综合评价法)介绍及python3实现中的例子,根据公式,计算每一行的 RSR

在这里插入图片描述

(5)确定RSR的分布

RSR 的分布是指用概率单位 Probit 表达的值特定的累计频率 。

其方法为:

  1. 将RSR值按照从小到大的顺序排列
  2. 列出各组频数
  3. 计算各组累计频数
  4. 确定各组RSR的秩次R及平均秩次 R ˉ \bar{R} Rˉ
  5. 计算向下累计频率 R ˉ / n   × 100 % \bar{R}/n\ \times 100\% Rˉ/n ×100%,最后一项用 ( 1 − 1 / 4 n ) × 100 % \left( 1-1/4n \right) \times 100\% (11/4n)×100% 修正
  6. 根据累计频率,查询“百分数与概率单位对照表”,求其所对应概率单位 Probit 值

还是以上面引用的例子
在这里插入图片描述
在这里插入图片描述
更详细的百分数与概率单位对照表
http://www.docin.com/p-2211225521.html
在这里插入图片描述

(7)计算直线回归方程

以累计频率所对应的概率单位值 Probit 为自变量,以RSR值为因变量,计算回归方程

R S ^ R = a + b P r o b i t R\hat{S}R=a+bProbit RS^R=a+bProbit

利用最小二乘估计,求出参数值,得出相关系数 r 和直线回归方程,通过 Probit ,推出 RSR 估计值

例如

在这里插入图片描述

在这里插入图片描述

(8)进行排序,按最佳分档原则进行分档

据各分档排序情况下概率单位Probit值,按照最佳分档原则对评价对象进行分档归类。分档数由研究者根据实际情况决定。

一般档次数量为 3档 ,也可以是 4挡、5挡

例如

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
从③的分档,学校整体绩效呈现从差–》中–》良–》优的发展趋势,往越来越好的方向发展。

(9)进一步检验是否最佳分档

最佳分档的检验。在分档之后对分档结果进行方差一致检验,要求各档差异有统计学意义。

可以用软件实现

方差一致性检验(Bartlett检验)

在这里插入图片描述

在这里插入图片描述

参考:
《高等职业院校教师绩效管理的方法研究》_郭晖云
《基于加权秩和比法的汽车物流服务商选择方法研究》_苗继承
SPSS在线_SPSSAU_SPSS_秩和比RSR
RSR(秩和比综合评价法)介绍及python3实现——python代码

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值