学习笔记,来自 产品经理不再纸上谈兵——雾里看花的用户画像
重要学习资料
1.数据分析之用户画像方法与实践
2.用户画像是怎么生成出来的?
什么是用户画像
用户画像(user profile)的概念最早由交互设计之父Alan Cooper提出,是针对产品/服务目标群体真实特征的勾勒,是真实用户的综合原型,作为真实用户的虚拟代表,是建立在一系列属性数据上的目标用户模型。
Personas are a concrete representation of target users.
真实用户的虚拟代表
——交互设计之父Alan Cooper
用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
随着互联网的发展,现在我们说的用户画像(Persona)又包含了新的内涵
根据用户人口学特征、网络浏览内容、网络社交活动和消费行为等信息而抽象出的一个标签化的用户模型。
例如
男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。
这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:信息标签化。
用户画像的作用
精准营销
行业报告
用户研究
…
(1)专注用户
用户画像可以使产品的服务对象更加聚焦,更加的专注。如果这个产品是适合每一个人的,那么其实它是为最低的标准服务的,这样的产品要么毫无特色,要么过于简陋。
比如:
- 苹果手机,定位是高端手机
- 豆瓣,目标群体是文艺群体,专注文艺事业十多年,只为文艺青年服务,用户粘性非常高,文艺青年在这里能找到知音,找到归宿。
(2)避免盲目
用户画像可以在一定程度上避免产品设计人员草率的代表用户。代替用户发声是在产品设计中常出现的现象,这样的后果往往是:我们精心设计的服务,用户并不买账,甚至觉得很糟糕。
(3)提高效率
用户画像还可以提高决策效率。在现在的产品设计流程中,参与者非常多,分歧总是不可避免。而当所有参与产品的人都基于一致的用户进行讨论和决策,就很容易约束各方能保持在同一个大方向上,提高决策的效率。
创建用户画像
业内有很多关于创建用户画像的方法,比如
- Alen Cooper的“七步人物角色法"
- Lene Nielsen的"十步人物角色法"等
事实上,当我们了解了这些方法之后,就会发现这些方法从流程上可以分为3个步骤
(1)用户信息的获取和分析
在这3大步骤中,最主要的区别在于对用户信息的获取和分析,从这个维度上讲主要有以下三种方法:
定性就是去了解和分析,而定量则是去验证。定量分析的成本较高、相对更加专业,而定性研究则相对节省成本。
因此创建用户画像的方法并不是固定的,而是需要根据实际项目的需求和时间以及成本而定。
(2)丰富用户画像
在用户画像整个过程当中,“丰富画像”是最有趣也最需要细致打磨的环节。非常考验团队及设计师的敏锐度和细腻度,因为这部分是将赋予用户画像灵魂的关键步骤,堪比"画龙点睛”。
我们在前期获取了大量枯燥且凌乱的基础数据,为了让用户画像在产品设计中发挥作用,我们必须让它活起来这就需要我们细致分析数据,并赋予用户画像更多的元素,使其立体和饱满,把数据有规则的捏合成活生生的用户模型,参与到之后的产品设计当中
构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。
用来丰富用户画像的元素有:居住地、工作地点公司、爱好、家庭生活、朋友圈、性格、个人语录等等。
用户画像的颗粒度
前面提到过要丰富用户画像,让被刻画的用户变得立体清晰,有助于产品设计的精确投入。这就类似马赛克拼图,单位面积内的点越多,图像就越清晰。但是不是颗粒度越小越好呢?
如果特别清楚,可能就无法代表产品的目标用户了,反而会限制住目标用户
例子:
“这是一台相机”
“这是一台胶片相机”
“这是一台胶片单反相机”
“这是一台尼康胶片单反相机”
“这是一台尼康FM2胶片单反相机”
越往下,颗粒度越小
当它是一台相机时,它身上具备所有相机的共性,但当它是一台胶片相机时,显然它就不能代表数码相机了,当它是一台尼康FM2胶片单反相机时,它就只能代表这一特定品牌、特定型号的相机了。
用户画像的颗粒度不应该过于细密。一方面是因为这直接影响着成本;另一方面也因为过于细致的颗粒度会造成服务目标过于单一。
小结
使用何种"用户画像"方法一定要结合项目的实际需求和成本,要拒绝教条主义,方法是死的,人是活的,一切"上纲上线"的设计方法都是要流氓!
这些用户头像画出来以后,产品经理的脑子里除了这些人,其他人都不认识才行,这样就避免了很多杂音和干扰,这样你做出来的产品才准。(精准营销,精准匹配)