关于原神抽奖概率的简要分析

本文围绕原神抽卡展开,运用概率论知识,通过全概率公式和间接求解法计算抽中五星的平均概率,得出结果略小于官方给出的概率。还使用Python做实验,用直方图展示抽奖情况。指出游戏无绝对非酋或欧皇,玩家应合理估计抽卡结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序言

最近迷上了原神这款游戏,趁着保研完,肝了两个星期,也氪了一些金。先不谈这款游戏可玩性有多高,但论氪金强度算是我从小到大玩的游戏中,能排得上第一的了。

对于这种寸卡寸金的游戏,如何在无穷无尽的抽卡活动中,做到理性抽卡,无疑需要严谨的数学分析,才能了解大概氪多少金才能满足自己的预期。本文将对此做出一定的解答。

同时,本文对于网上一直所传的氪不改命,玄不救非之说,也将进行一定的抨击。

假设陈述

  • 原神抽奖卡池,在非保底的情况下,抽到五星的概率为基础概率,即0.6%

符号说明

符号含义
X X X表示在平均概率下进行
独立重复试验中第一次
抽到五星的次数的随机变量
P ( s u c c e s s ) P(success) P(success)表示抽到五星的平均概率
P ( b o t t o m ) P(bottom) P(bottom)表示保底情况出现的概率
P ( b a s e ) P(base) P(base)表示抽到五星的基础概率
已知:0.6%
n n n表示保底在第几次未抽中时出现
已知:90
P ( s u c c e s s ∥ b o t t o m ) P(success\|bottom) P(successbottom)表示在保底情况下抽中五星的概率
已知:1
P ( s u c c e s s ∥ b o t t o m ‾ ) P(success\|\overline{bottom}) P(successbottom)表示在非保底情况下抽中五星的概率
已知: P ( b a s e ) P(base) P(base)

目标变量

P ( s u c c e s s ) P(success) P(success)

求解方法

  • 法一:

    运用全概率公式,写出方程组,直接进行求解。

    { P ( b o t t o m ) P ( s u c c e s s ∥ b o t t o m ) + P ( b o t t o m ‾ ) P ( s u c c e s s ∥ b o t t o m ‾ ) = P ( s u c c e s s ) P ( s u c c e s s ) ( 1 − P ( b a s e ) ) n − 1 = P ( b o t t o m ) \left\{\begin{matrix} P(bottom)P(success\|bottom)+P(\overline{bottom})P(success\|\overline{bottom})=P(success) \\ P(success)(1-P(base))^{n-1}=P(bottom) \end{matrix}\right. {P(bottom)P(successbottom)+P(bottom)P(successbottom)=P(success)P(success)(1P(base))n1=P(bottom)

    代入,得:

    { P ( b o t t o m ) + 0.006 ( 1 − P ( b o t t o m ) ) = P ( s u c c e s s ) P ( s u c c e s s ) ( 1 − 0.006 ) 89 = P ( b o t t o m ) \left\{\begin{matrix} P(bottom)+0.006(1-P(bottom))=P(success) \\ P(success)(1-0.006)^{89}=P(bottom) \end{matrix}\right. {P(bottom)+0.006(1P(bottom))=P(success)P(success)(10.006)89=P(bottom)

    求解,得:

    P ( s u c c e s s ) = 0.01435 ± 0.000005 P(success)=0.01435\pm0.000005 P(success)=0.01435±0.000005

  • 法二:

    通过间接求解,在平均概率下进行独立重复试验中第一次抽到五星的次数的期望,进行求解。

    E [ X ] = ∑ i = 1 n − 1 i ∗ P ( b a s e ) ( 1 − P ( b a s e ) ) i − 1 + n ∗ ( 1 − ∑ i = 1 n − 1 P ( b a s e ) ( 1 − P ( b a s e ) ) i − 1 ) = ∑ i = 1 89 i ∗ 0.006 ( 1 − 0.006 ) 89 + 90 ∗ ( 1 − ∑ i = 1 89 0.006 ( 1 − 0.006 ) 89 ) ≈ 69.6998 E[X]=\sum_{i=1}^{n-1}i*P(base)(1-P(base))^{i-1}+n*(1-\sum_{i=1}^{n-1}P(base)(1-P(base))^{i-1}) \\ \quad \\ =\sum_{i=1}^{89}i*0.006(1-0.006)^{89}+90*(1-\sum_{i=1}^{89}0.006(1-0.006)^{89}) \\ \quad \\ \approx69.6998 E[X]=i=1n1iP(base)(1P(base))i1+n(1i=1n1P(base)(1P(base))i1)=i=189i0.006(10.006)89+90(1i=1890.006(10.006)89)69.6998

    P ( s u c c e s s ) = 1 E [ X ] P(success)=\frac{1}{E[X]} P(success)=E[X]1(这个等式,概率论那本书上好像没有,不过我自己私下里证明过了,感兴趣的同学可以自行证明)

    那么,可以得到与法一相同的结果,证明了结果的正确性。

结论

可以看到的是我们得出的平均概率1.435%是略小于官方给出的平均概率1.6%的。
很显然,这说明,即使在未保底的情况下,我们抽中五星的概率可能并非是基础概率0.6%。
结合这几天,我看的PDD抽奖的视频,我发现确实在一些之前很非的情况下,后面抽到五星的频率显著变高。
当然,我并不清楚原神抽奖内部究竟是怎样的机制,不过或许可以借助这一点,再结合一些大佬的分析,在五十抽向后的概率或许确实有一定的提升。所以大家注意好这点,抽双黄吧!

当然,这也仅仅是概率的提高,可能样本量少一点的话,在实际抽奖中,根本感觉不到那种概率的提升。所以,也仅供大家参考。同时,大家也要考虑一下自己的经济水平究竟如何,有多大经济水平,有多大期望。

这里我用python做了一个小实验,用直方图展示10000个玩家,在我上述假设的那种情况下抽奖2000次,抽到五星的次数,并与无保底的转换平均概率(0.01435)进行了比较。

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
import random
import numpy as np
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']

random.seed(0)
data1=[]
data2=[]
n=10000
epoches=2000
prob=0.006
prob_trans=0.01435

for i in range(n):
    curcnt=0
    counter=0
    for epoch in range(epoches):
        rand=random.random()
        counter+=1
        if rand<prob:
            curcnt+=1
            counter=0
        if counter==90:
            curcnt+=1
            counter=0
    data1.append(curcnt)
    
plt.subplot(121)
plt.hist(data1,bins=np.linspace(10,50,20),density=False)
plt.xlim(10,50)
plt.ylim(0,4000)
plt.title('90次保底情况')

for i in range(n):
    curcnt=0
    for epoch in range(epoches):
        rand=random.random()
        if rand<prob_trans:
            curcnt+=1
    data2.append(curcnt)

plt.subplot(122)
plt.hist(data2,bins=np.linspace(10,50,20),density=False)
plt.xlim(10,50)
plt.ylim(0,4000)
plt.title('无90次保底情况(基础概率已经过转换)')
plt.show()

在这里插入图片描述

从左图中,大家可以估计一下,自己抽多少次,能拿到多少五星。

同时,通过上图的对比,可以看出,在原神抽奖的机制下,并不会出现,特别非酋,或者特别欧皇的情况。最非酋和最欧皇的,也就是一倍之差。所以,大家也不要相信网上那些一个十抽多少黄的视频了,肯定是P的。

即使出了双黄的兄弟,之前也是大概率流下过非酋的眼泪。

所以,这个游戏,没有绝对的非酋,也没有绝对的欧皇,合理估计自己能拿到的五星,不要有非分之想,方为正途!

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值