如果直接看浮点数表示法有点费力或者不好理解,不妨复习一下科学计数法。毕竟我们一直接触十进制,从十进制的角度可能更好理解其特性。
目录
科学计数法 Scientific Notation
1. 科学计数法的定义
-
概述
它将一个数表示为一个1到10之间的数字与10的幂的乘积。
即一个数被表示为 A × 1 0 n A \times 10^n A×10n的形式,其中:
- A A A是一个大于等于1且小于10的实数(通常是一个整数或小数)。
规定了A的大小,这点就对应了浮点数表示中的规约或者说规范化。
其目的是为了保证表示法的准确性和一致性:不然 20 ∗ 1 0 3 20*10^3 20∗103和 2 ∗ 1 0 4 2*10^4 2∗104,或者等等其他表示都可以表示为20000,到底用哪个表示呢
- n n n是一个整数,表示10的指数。
示例:- 1234 1234 1234可以表示为 1.234 × 1 0 3 1.234 \times 10^3 1.234×103。
- 0.00567 0.00567 0.00567可以表示为 5.67 × 1 0 − 3 5.67 \times 10^{-3} 5.67×10−3。
- 应用场景
科学计数法在许多领域都有应用,包括工程学、物理学、化学和计算机科学。
在计算机编程中,科学计数法常用于浮点数的存储和计算。 - 优点
- 简洁:可以简化表示非常大或非常小的数,避免写出一长串数字。
- 方便:在科学计算中,使用科学计数法可以简化运算过程。
- 使用科学记数法,一个数的数量级、精确度和数值都较容易看出,
例如: - 一个质子质量的数值为︰0.00000000000000000000000167262158。科学记数法的形式︰ 1.67262158 × 1 0 − 24 1.67262158×10^−24 1.67262158×10−24
- 若以公斤为表示单位,则木星的质量值约为:1898130000000000000000000000科学记数法的形式︰ 1.89813 × 1 0 27 1.89813×10^{27} 1.89813×1027
2. 精确度与有效数字
- 精确度(
Precision
)指的是数值表示的准确性和细节程度。 - 有效数字(
Significant Figures
)是指在一个数中,从第一个非零数字起,直到末尾数字止的所有数字。表示了数据的精度和可靠性。 - 科学记数法中,尾数也被称作有效数。
科学计数法的精确度由有效数字A的位数决定。
13410,精确到十位,记作: 1.341 × 1 0 4 1.341 \times 10^4 1.341×104
13410 ,精确到百位,记作: 1.34 × 1 0 4 1.34 \times 10^4 1.34×104 - 有效数字的规则
- 所有非零数字都是有效的:例如,123.45有五位有效数字(1、2、3、4、5)。
- 两个非零数字之间的零也是有效的:例如,101.1203有七位有效数字(1、0、1、1、2、0、3)。
- 前缀零始终无效:例如,0.00052只有两位有效数字(5和2)。
- 包含小数点的数中,结尾的零是有效的:例如,12.2300有六位有效数字(1、2、2、3、0、0)。
- 不包含小数点的数,结尾的零可能有效也可能无效,取决于上下文。但在科学计数法中,有效数字便能够判别。
例如,1300的有效数字可能是2位、3位或4位,具体取决于上下文。
科学记数法可以帮助明确有效数字。例如,0.000122300可以写成 1.22300 × 1 0 − 4 1.22300 \times 10^-4 1.22300×10−4,这样就明确了有六位有效数字
参考:http://www.shuxueji.com/w/2623
3. 转换为科学计数法
要将一个数转换为科学计数法,需要执行以下步骤:
- 如果数字是整数并且
大于或等于``10
,则将数字的小数点向左移动
,直到只有一个非零数字位于小数点左侧。 - 如果数字是整数并且
小于``1
,则将数字的小数点向右移动
,直到只有一个非零数字位于小数点左侧。 - 如果数字是小数,则将小数点向左或向右移动,使得小数点
左侧
只有一个非零数字。 - 记录
小数点移动的位数
,这个位数就是10的指数。
示例:
- 将 12345 12345 12345转换为科学计数法:
- 移动小数点,得到 1.2345 × 1 0 4 1.2345 \times 10^4 1.2345×104。
- 将 0.000567 0.000567 0.000567转换为科学计数法:
- 移动小数点,得到 5.67 × 1 0 − 4 5.67 \times 10^{-4} 5.67×10−4。
4. 运算
科学计数法的运算规则如下:
- 加法和减法:
a × 1 0 n + b × 1 0 n = ( a + b ) × 1 0 n a \times 10^n + b \times 10^n = (a+b) \times 10^n a×10n+b×10n=(a+b)×10n
例如: ( 3 × 1 0 4 + 4 × 1 0 4 = 7 × 1 0 4 ) (3 \times 10^4 + 4 \times 10^4 = 7 \times 10^4) (3×104+4×104=7×104) - 乘法:
( a × 1 0 m ) × ( b × 1 0 n ) = ( a × b ) × 1 0 m + n (a \times 10^m) \times (b \times 10^n) = (a \times b) \times 10^{m+n} (a×10