简单易懂的人工智能系列:机器学习基本概念(二)

经验风险VS 风险函数

经验风险(Empirical Risk):损失函数度量了单个样本的预测结果,要想衡量整个训练集的预测值和真实值的差异,将整个训练集所有记录进行一次预测求取损失函数,将所有值累加,即为经验风险。经验风险越小说明模型f(x)对训练集的拟合程度越好。

公式为:经验风险类似为代价函数(Cost Function),作用于整个训练集,是整个样本集的平均误差,对所有损失函数值的平均。

风险系数(Risk Function):又称期望损失、期望风险。所有数据集(包括训练集和预测机,遵循联合分布P(X, Y))的损失函数的期望值。公式为:

经验风险VS 期望风险:

经验风险存在的问题是样本集较小的时候,仅仅关注经验风险,很容易导致过拟合,比如有坐标系有一系列的点,通过图我们可以大致知道是线下关系

通过线性(一次)拟合可得, Y = \(y = 1.0429x+0.2571\),实际上有些点没在直线模型上,也就是经验风险还存在,而且在不断增大模型的复杂度的情况下,对当前数据样本的拟合会越来越好(经验风险下降,当到六次模型时候,完全拟合——经验风险最低)

那是否能说明经验风险低,模型就一定低吗?

刚才的是训练集,这之外还有新的数据(测试集),通过计算各个次模型在训练集和预测集上的的预测值和损失函数

我们可以看到随着模型越来越复杂,虽然训练集上的误差不断下降,加上测试集后,在全局数据上的误差(期望风险)不断增大——过拟合了。

那我们该怎么办才能选择在全局数据上表现好的模型呢?这时候需要引入结构风险这个概念,

结构风险(Structural Risk)

结构风险是指在经验风险的基础上,增加一个正则化项(Regularizer)或者叫做惩罚项(Penalty Term),公式为:

                    

其中 为一个大于0的系数,\(J(f)\)表示模型\(f(x)\)的复杂度。这样对越复杂的模型惩罚的力度越大

结构风险VS 经验风险

参数越多,经验风险越小,模型越复杂,越容易过拟合 ,结构风险就是通过使得经验风险和模型复杂度相对达到最小,此时的模型在全局数据上的效果最好。

正则化项

首先看一个栗子:已知某数据集有6个特征值,目的是在特征值和结果之间建立联系,去预测未知数据集上的结果。选取绝对值损失函数:、惩罚函数项选择 (其中是模型的参数,绝对值越小——越接近0,对模型的复杂度贡献越小),计算结构风险和经验风险:

从图中可以看到,二元模型的经验风险最小,而一元模型的结构风险最小,在测试集上的经验风险一元模型更好(为何测试集只算经验风险,因为我们在已知测试集之后,全局数据上的经验风险近似为期望风险),所以我们要选择结构风险最小的模型。

正则化项(Regularizer):即惩罚函数,该项对模型向量进行惩罚,从而避免过拟合问题。正则化方法,会自动 消弱不重要的特征变量,自动从许多的特征变量中“提取”重要的特征变量,减小特征变量的数量级。

我们来示范的计算一下结构风险(取 = 1):

六次模型的惩罚项远远大于一次模型。一次模型虽然经验风险高,但是综合后一次模型更好。

范数

规则化函数有多种选择,一般的,它是模型复杂度的单调递增函数,模型越复杂,该函数的值也就越大,惩罚力度也就越大。常使用模型的参数向量的范数。

常用的范数有零范数,一范数,二范数,迹范数,Frobenius范数等等

范数(Norm):是数学中的一种基本概念,它定义在赋泛线性空间汇总,满足非负性齐次性三角不等式等条件的量三个特点。常常用来度量向量的长度和大小,P-范数的公式 表示为:

L0范数:非0的元素的个数。使用L0范数,期望参数大部分为0,即让参数是稀疏的(某些特征被消除)。

L1范数:各个元素的绝对值之和,使用L1范数,会使参数稀疏(参数变为0,使得某些特征被消除)。L1范数也被称为稀疏规则算子

L2范数:各元素的平方和求平方根,使得每个元素都很小,但不会的等于0,而是接近0(比如有五个参数,那么有部分参数会被调的很小,但不为0)。

就像上面这个图中,对于L2范数,相当于左侧的两个圆相切(横纵坐标都不为0),对于L1范数,相当于(在坐标轴上的点和风险函数相切,其中部分参数被稀疏为了0)

L1范数下的回归——Lasso回归,L2范数下的回归——岭(Ridge)回归

在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。正则化就符合奥卡姆剃刀原理(“如无必要,勿增实体”,即“简单有效原理——切勿浪费较多东西去做,用较少的东西,同样可以做好的事情。”)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔的猫96

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值