自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

A LA MODE的博客

欢迎访问

  • 博客(14)
  • 资源 (1)
  • 收藏
  • 关注

翻译 RFC8578

https://www.rfc-editor.org/rfc/rfc8557

2023-04-27 15:41:25 197

翻译 RFC8557确定性网络问题陈述

RFC8557

2023-04-27 15:39:38 211

原创 N-BEATS NEURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING

时间序列(TS)预测是机器学习(ML)的一个重要业务问题和富有成效的应用领域。它是现代商业的大多数方面的基础,包括库存控制和客户管理等关键领域,以及从生产和分销到财务和营销的商业计划。因此,它具有相当大的经济影响,通常,每一个点的预测准确性将产生数百万美元盈利。然而,不同于计算机视觉或自然语言处理,那里深度学习(DL)技术现在已经根深蒂固;在时许领域,仍然有证据表明ML和DL难以超过经典的统计TS预测方法(Makridakis et al., 2018a;b)。...

2022-08-03 01:19:43 641

原创 A hybrid method of exponential smoothing and recurrent

近几十年来,神经网络(NNs)和其他机器学习(ML)算法在各个领域取得了显著的成功,包括图像和语音识别、自然语言处理(NLP)、自动驾驶汽车和游戏(Makridakis, 2017)等。它们成功的关键在于,给定一个大型的代表性数据集,ML算法可以学习识别复杂的非线性模式,并探索非结构化的关系,而无需先验假设。因此,ML算法不受假设或预定义的数据生成过程的限制,允许数据自己说话。然而,在预测方面,ML的优越性并不明显。...

2022-08-03 01:11:10 482

原创 时间序列分析笔记 4-6章

对任意一个离散平稳过程xt{x_{t}}xt​,可以分解为确定序列vtv_{t}vt​与随机序列ξt\xi_{t}ξt​之和.其中,ξt=∑j=0∞φjεt−j\xi_{t}=\sum_{j=0}^{\infty} \varphi_{j} \varepsilon_{t-j}ξt​=∑j=0∞​φj​εt−j​.且满足如下条件:​ (1) φ0=1,∑j=0∞φj2...

2022-07-22 13:08:23 925

原创 时间序列分析笔记 1-3章

https://github.com/breakwa/Model-Learning/blob/main/%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90%E7%AC%94%E8%AE%B0%201-3%E7%AB%A0.md1.什么是时间序列?描述随机过程与时间序列的关系。2.什么是离散时间序列?对于非等间隔序列如何建模?(第二问为开放问题)3.宽平稳序列的三个条件?纯随机序列的定义?4.平稳性检验与纯随机性检验的方法有哪些?5.$ \nabla_

2022-07-09 00:07:04 1108

原创 移动通信网络架构 1G-5G

自20世纪80年代初第一代移动网络(1G)问世以来,移动无线通信在过去几十年里取得了许多进展。移动通信标准的这种演变是全球对更多用户和连接日益增长的需求的直接结果.在本文中,我们将研究支撑这些移动技术的基础设施和组件——从1G一直到即将到来的5G。在本文末尾,我们的目标是使图表(如下面的图表)变得更容易理解![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UH4Oipmw-1655441709728)(https://i.imgur.com/bVBdrJG.png)]在我们开始

2022-06-17 12:57:08 6836 5

原创 ch03_ 复杂一点的查询 及答案

第三章 复杂一点的查询之前介绍了sql基本的查询用法,接下来介绍一些相对复杂的用法。3.1 视图我们先来看一个查询语句SELECT product_name FROM view_product;单从表面上看起来这个语句是和正常的从数据表中查询数据是完全相同的,但其实我们操作的是一个视图。所以从SQL的角度来说操作视图与操作表看起来是完全相同的,那么为什么还会有视图的存在呢?视图到底是什么?视图与表有什么不同呢?3.1.1 什么是视图视图是一个虚拟的表,不同于直接操作数据表,视图是依据SELE

2022-05-21 19:36:19 323

翻译 迹范数(trace norm)翻译

Trace Norm   【转载:http://en.wikipedia.org/wiki/Trace_(linear_algebra)】-------------------------------------------------------------------------------------From Wikipedia, thefree encyclopediaFor other uses, see TraceIn&nb...

2021-11-19 17:37:02 3150

转载 机器学习中的范数规则化之(一)L0、L1与L2范数

(****本文装载自zouxy09的博客,首先作者讲解非常好,是肯定的。其中一些参照自己的理解作了标记或注释,一些个人感觉没有用的就删掉了,在此特别说明****) 机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09          今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理...

2021-11-19 16:49:35 333

转载 拒绝采样(reject sampling)原理详解

  蒙特·卡罗方法(Monte Carlo method)也称统计模拟方法,通过重复随机采样模拟对象的概率与统计的问题,在物理、化学、经济学和信息技术领域均具有广泛应用。拒绝采样(reject sampling)就是针对复杂问题的一种随机采样方法。   首先举一个简单的例子介绍Mo...

2021-11-14 16:51:21 1085

原创 nn.Module模块的分类与使用

前言本文比较了以下几种神经网络模型容器的区别一、容器类型1.有序型代码如下:1.1.LeNetSequentialclass LeNetSequential(nn.Module): def __init__(self, classes): super(LeNetSequential, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 6, 5),

2021-10-27 21:50:24 799

原创 由x = x.view(x.size()[0], -1)引发的对CNN模型的分析

项目场景:提示:自己搭建CNN以及ALexNet时:问题描述:有一段代码看不懂:x = x.view(x.size()[0], -1)初步分析:应该是让特征张量扁平化,一维化。class LeNetSequential(nn.Module): def __init__(self, classes): super(LeNetSequential, self).__init__() self.features = nn.Sequential(

2021-10-27 16:32:14 430

翻译 IETF_RFC7799中文版(主动和被动测量及方法(中间有混合类型))

译者注:兴趣流就是收集到的待分析流原文:https://datatracker.ietf.org/doc/html/rfc7799#ref-Y.1731来自:draft-ietf-ippm-active-passive-06 信息互联网工程任务组(IETF) A.莫顿请求评论:7799

2021-06-12 10:40:19 1234

SAT 5G 卫星通信 标准化组织工作进展及相关会议报告

卫星通信 场景 标准化组织工作进展 3GPP CEPT ITU-R ETSI CEPT TAS SES

2022-07-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除