时间序列分析
文章平均质量分 93
Y.F,Ge
11
展开
-
N-BEATS NEURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING
时间序列(TS)预测是机器学习(ML)的一个重要业务问题和富有成效的应用领域。它是现代商业的大多数方面的基础,包括库存控制和客户管理等关键领域,以及从生产和分销到财务和营销的商业计划。因此,它具有相当大的经济影响,通常,每一个点的预测准确性将产生数百万美元盈利。然而,不同于计算机视觉或自然语言处理,那里深度学习(DL)技术现在已经根深蒂固;在时许领域,仍然有证据表明ML和DL难以超过经典的统计TS预测方法(Makridakis et al., 2018a;b)。...原创 2022-08-03 01:19:43 · 642 阅读 · 0 评论 -
A hybrid method of exponential smoothing and recurrent
近几十年来,神经网络(NNs)和其他机器学习(ML)算法在各个领域取得了显著的成功,包括图像和语音识别、自然语言处理(NLP)、自动驾驶汽车和游戏(Makridakis, 2017)等。它们成功的关键在于,给定一个大型的代表性数据集,ML算法可以学习识别复杂的非线性模式,并探索非结构化的关系,而无需先验假设。因此,ML算法不受假设或预定义的数据生成过程的限制,允许数据自己说话。然而,在预测方面,ML的优越性并不明显。...原创 2022-08-03 01:11:10 · 484 阅读 · 0 评论 -
时间序列分析笔记 4-6章
对任意一个离散平稳过程xt{x_{t}}xt,可以分解为确定序列vtv_{t}vt与随机序列ξt\xi_{t}ξt之和.其中,ξt=∑j=0∞φjεt−j\xi_{t}=\sum_{j=0}^{\infty} \varphi_{j} \varepsilon_{t-j}ξt=∑j=0∞φjεt−j.且满足如下条件: (1) φ0=1,∑j=0∞φj2...原创 2022-07-22 13:08:23 · 928 阅读 · 0 评论 -
时间序列分析笔记 1-3章
https://github.com/breakwa/Model-Learning/blob/main/%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90%E7%AC%94%E8%AE%B0%201-3%E7%AB%A0.md1.什么是时间序列?描述随机过程与时间序列的关系。2.什么是离散时间序列?对于非等间隔序列如何建模?(第二问为开放问题)3.宽平稳序列的三个条件?纯随机序列的定义?4.平稳性检验与纯随机性检验的方法有哪些?5.$ \nabla_原创 2022-07-09 00:07:04 · 1112 阅读 · 0 评论