机器学习
文章平均质量分 75
Y.F,Ge
11
展开
-
N-BEATS NEURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING
时间序列(TS)预测是机器学习(ML)的一个重要业务问题和富有成效的应用领域。它是现代商业的大多数方面的基础,包括库存控制和客户管理等关键领域,以及从生产和分销到财务和营销的商业计划。因此,它具有相当大的经济影响,通常,每一个点的预测准确性将产生数百万美元盈利。然而,不同于计算机视觉或自然语言处理,那里深度学习(DL)技术现在已经根深蒂固;在时许领域,仍然有证据表明ML和DL难以超过经典的统计TS预测方法(Makridakis et al., 2018a;b)。...原创 2022-08-03 01:19:43 · 642 阅读 · 0 评论 -
A hybrid method of exponential smoothing and recurrent
近几十年来,神经网络(NNs)和其他机器学习(ML)算法在各个领域取得了显著的成功,包括图像和语音识别、自然语言处理(NLP)、自动驾驶汽车和游戏(Makridakis, 2017)等。它们成功的关键在于,给定一个大型的代表性数据集,ML算法可以学习识别复杂的非线性模式,并探索非结构化的关系,而无需先验假设。因此,ML算法不受假设或预定义的数据生成过程的限制,允许数据自己说话。然而,在预测方面,ML的优越性并不明显。...原创 2022-08-03 01:11:10 · 484 阅读 · 0 评论 -
时间序列分析笔记 1-3章
https://github.com/breakwa/Model-Learning/blob/main/%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90%E7%AC%94%E8%AE%B0%201-3%E7%AB%A0.md1.什么是时间序列?描述随机过程与时间序列的关系。2.什么是离散时间序列?对于非等间隔序列如何建模?(第二问为开放问题)3.宽平稳序列的三个条件?纯随机序列的定义?4.平稳性检验与纯随机性检验的方法有哪些?5.$ \nabla_原创 2022-07-09 00:07:04 · 1112 阅读 · 0 评论 -
机器学习中的范数规则化之(一)L0、L1与L2范数
(****本文装载自zouxy09的博客,首先作者讲解非常好,是肯定的。其中一些参照自己的理解作了标记或注释,一些个人感觉没有用的就删掉了,在此特别说明****) 机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理...转载 2021-11-19 16:49:35 · 333 阅读 · 0 评论 -
拒绝采样(reject sampling)原理详解
蒙特·卡罗方法(Monte Carlo method)也称统计模拟方法,通过重复随机采样模拟对象的概率与统计的问题,在物理、化学、经济学和信息技术领域均具有广泛应用。拒绝采样(reject sampling)就是针对复杂问题的一种随机采样方法。 首先举一个简单的例子介绍Mo...转载 2021-11-14 16:51:21 · 1086 阅读 · 0 评论