[SDOI2016]征途

广告 :博客食用更佳

题目链接

Solution

方差

= ∑ i = 1 m ( x i − x ˉ ) 2 m \frac{\displaystyle\sum^{m}_{i=1}{{(x_i-\bar{x})^2}}}{m} mi=1m(xixˉ)2

= ∑ i = 1 m ( x i 2 + x ˉ 2 − 2 ∗ x i ∗ x ˉ ) \displaystyle\sum^{m}_{i=1}{({x_i^2} + \bar{x}^2 - 2*x_i*\bar{x})} i=1m(xi2+xˉ22xixˉ)

= ∑ i = 1 m ( x i 2 + ∑ i = 1 m x i m − 2 ∗ x i ∗ ∑ i = 1 m x i m ) \displaystyle\sum^{m}_{i=1}{(x_i^2+\frac{\displaystyle\sum^{m}_{i=1}x_i}{m}- 2*x_i*\frac{\displaystyle\sum^{m}_{i=1}x_i}{m})} i=1m(xi2+mi=1mxi2ximi=1mxi)

= ∑ i = 1 m x i 2 + ∑ i = 1 m x i − ∑ i = 1 m ( 2 ∗ x i ∗ ∑ i = 1 m x i ) m \displaystyle\sum^{m}_{i=1}{x_i^2}+\displaystyle\sum^{m}_{i=1}x_i-\frac{\displaystyle\sum^{m}_{i=1}(2*x_i*\displaystyle\sum^{m}_{i=1}x_i)}{m} i=1mxi2+i=1mximi=1m(2xii=1mxi)

= ∑ i = 1 m x i 2 + ∑ i = 1 m x i − ∑ i = 1 m x i ∗ ∑ i = 1 m ( 2 ∗ x i ) m \displaystyle\sum^{m}_{i=1}{x_i^2}+\displaystyle\sum^{m}_{i=1}x_i-\frac{\displaystyle\sum^{m}_{i=1}x_i*\displaystyle\sum^{m}_{i=1}(2*x_i)}{m} i=1mxi2+i=1mximi=1mxii=1m(2xi)

= ∑ i = 1 m x i 2 + ∑ i = 1 m x i − 2 ∗ ( ∑ i = 1 m x i ) 2 m \displaystyle\sum^{m}_{i=1}{x_i^2}+\displaystyle\sum^{m}_{i=1}x_i-\frac{2*(\displaystyle\sum^{m}_{i=1}x_i)^2}{m} i=1mxi2+i=1mxim2(i=1mxi)2

易得 ∑ i = 1 m x i \displaystyle\sum^{m}_{i=1}x_i i=1mxi ∑ i = 1 m x i \displaystyle\sum^{m}_{i=1}x_i i=1mxi是定值

所以只需要求 ∑ i = 1 m x i 2 \displaystyle\sum^{m}_{i=1}{x_i^2} i=1mxi2的最小值就行了

然后再套上公式 注意得*上 m 2 m^2 m2

然后非常容易想到DP

定义

dp[i][j]表示前i个分成j份的平方和的最小值

易得状态转移方程

d p [ i ] [ j ] = m i n ( d p [ k ] [ j − 1 ] + ( s u m [ i ] − s u m [ k ] ) 2 ) ; \color{pink}{dp[i][j] = min(dp[k][j-1]+(sum[i]-sum[k])^2);} dp[i][j]=min(dp[k][j1]+(sum[i]sum[k])2);

#include <cmath>
#include <cstdio>
#include <vector>
#include <climits>
#include <cstring>
#include <algorithm>
using namespace std;
#define isdigit(x) ('0' <= (x)&&(x) <= '9')
template<typename T>
inline T Read(T Type)
{
    T x = 0;
    char a;
    while(!isdigit(a)) a = getchar();
    while(isdigit(a)) x = (x << 3) + (x << 1) + a - '0',a = getchar();
    return x;
}
const int MAXN = 3005;
const int inf = INT_MAX;
int x[MAXN],sum[MAXN],f[MAXN][MAXN];
inline int dmult(int x) {return x * x;}
int main()
{
	int i,j,l,n = Read(1),m = Read(1);
	memset(f,0x3f,sizeof(f));
	for(i = 1;i <= n;i++)
	{
		x[i] = Read(1);
		sum[i] += sum[i - 1] + x[i];
	}
	f[0][0] = 0;
	for(i = 1;i <= n;i++)
	{
		for(l = 1;l <= min(i,m);l++)
		{
			for(j = 0;j < i;j++)
				f[i][l] = min(f[i][l],f[j][l - 1] + dmult(sum[i] - sum[j]));
		}
	}
	printf("%d",m * f[n][m] - dmult(sum[n]));
	return 0;
}

算一下时间复杂度

300 0 3 &gt; 1 0 9 3000^3 &gt;10^9 30003>109

显然不行

T L E \color{pink}{TLE} TLE

明显得优化下

看下标签 嗯 斜率优化

j &gt; k j&gt;k j>k

当且仅当

f [ j ] [ l − 1 ] + d m u l t ( s u m [ i ] − s u m [ j ] ) &lt; f [ k ] [ l − 1 ] + d m u l t ( s u m [ i ] − s u m [ k ] ) \color{pink}{f[j][l - 1] + dmult(sum[i] - sum[j]) &lt; f[k][l - 1] + dmult(sum[i] - sum[k])} f[j][l1]+dmult(sum[i]sum[j])<f[k][l1]+dmult(sum[i]sum[k])

我们认为j比k优

否则 k更优

化简一下得到

f [ j ] [ l − 1 ] + s u m [ i ] 2 + s u m [ j ] 2 − 2 ∗ s u m [ i ] ∗ s u m [ j ] &lt; f [ k ] [ l − 1 ] + s u m [ i ] 2 + s u m [ k ] 2 − 2 ∗ s u m [ i ] ∗ s u m [ k ] ) \color{pink}{f[j][l-1]+sum[i]^2+sum[j]^2-2*sum[i]*sum[j]&lt;f[k][l - 1] + sum[i]^2 + sum[k]^2-2*sum[i]*sum[k])} f[j][l1]+sum[i]2+sum[j]22sum[i]sum[j]<f[k][l1]+sum[i]2+sum[k]22sum[i]sum[k])

f [ j ] [ l − 1 ] − f [ k ] [ l − 1 ] + s u m [ j ] 2 − s u m [ k ] 2 &lt; 2 ∗ s u m [ i ] ∗ ( s u m [ j ] − s u m [ k ] ) \color{pink}{f[j][l-1]-f[k][l-1]+sum[j]^2-sum[k]^2&lt;2*sum[i]*(sum[j]-sum[k])} f[j][l1]f[k][l1]+sum[j]2sum[k]2<2sum[i](sum[j]sum[k])

因为我们设了 j &gt; k j&gt;k j>k

所以 s u m [ j ] − s u m [ k ] &gt; 0 sum[j]-sum[k]&gt;0 sum[j]sum[k]>0

所以

f [ j ] [ l − 1 ] − f [ k ] [ l − 1 ] + s u m [ j ] 2 − s u m [ k ] 2 ( s u m [ j ] − s u m [ k ] ) &lt; 2 ∗ s u m [ i ] \color{pink}{\frac{f[j][l-1]-f[k][l-1]+sum[j]^2-sum[k]^2}{(sum[j]-sum[k])}&lt;2*sum[i]} (sum[j]sum[k])f[j][l1]f[k][l1]+sum[j]2sum[k]2<2sum[i]

f [ j ] [ l − 1 ] + s u m [ j ] 2 − f [ k ] [ l − 1 ] − s u m [ k ] 2 ( s u m [ j ] − s u m [ k ] ) &lt; 2 ∗ s u m [ i ] \color{pink}{\frac{f[j][l-1]+sum[j]^2-f[k][l-1]-sum[k]^2}{(sum[j]-sum[k])}&lt;2*sum[i]} (sum[j]sum[k])f[j][l1]+sum[j]2f[k][l1]sum[k]2<2sum[i]

非常明显的斜率优化

P.S最后输出的时候按照我推出来的也行

#include <cmath>
#include <cstdio>
#include <vector>
#include <climits>
#include <cstring>
#include <algorithm>
using namespace std;
#define isdigit(x) ('0' <= (x)&&(x) <= '9')
template<typename T>
inline T Read(T Type)
{
    T x = 0;
    char a;
    while(!isdigit(a)) a = getchar();
    while(isdigit(a)) x = (x << 3) + (x << 1) + a - '0',a = getchar();
    return x;
}
const int MAXN = 3005;
const int inf = INT_MAX;
int x[MAXN],sum[MAXN],f[MAXN][MAXN],q[MAXN],g[MAXN];
inline int dmult(int x) {return x * x;}
inline double count_k(int u,int l,int r)
{
	return (f[l][u] - f[r][u] + g[l] - g[r]) / (double)(sum[l] - sum[r]);
}
int main()
{
	int i,j,l,n = Read(1),m = Read(1);
	for(i = 1;i <= n;i++)
	{
		x[i] = Read(1);
		sum[i] += sum[i - 1] + x[i];
		g[i] = dmult(sum[i]);
	}
	int left,r;
	for(i = 1;i <= n;i++) f[i][1] = dmult(sum[i]);
	for(l = 2;l <= m;l++)
	{
		left = 1,r = 0;
		for(i = 1;i <= n;i++)
		{
			while(left < r&&count_k(l - 1,q[left],q[left + 1]) < 2 * sum[i]) left++;
			f[i][l] = f[q[left]][l - 1] + dmult(sum[i] - sum[q[left]]);
			while(left < r&&count_k(l - 1,q[r - 1],q[r]) > count_k(l - 1,q[r],i)) r--;
			q[++r] = i;
		}
	}
	printf("%d",m * f[n][m] - dmult(sum[n]));
   //按我推出的式子也行
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值