笔记——单调队列&&单调栈优化DP

本文探讨了动态规划中的难题,并介绍了如何利用单调队列和栈进行优化。详细解析了Max Sum of Max-K-sub-sequence问题,阐述了单调队列在解决这类问题时的高效性,同时揭示了单调队列与动态规划状态转移方程的关联,展示了一种将复杂问题简化的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


众所周知

动态规划 的 题

往往 推了a long time
但是o(n^3)
于是就自闭了

所以我们有了

单调队列和栈

这种东西

神奇的单调队列

有这么一道题

朴素 o(n^2)

乱搞 o(nlog n)(线段树、RMQ)

然后。。。
单调队列
o(n)
对,你没有看错,就是一遍 其实是o(2n)?!
单调队列
用一个东西(栈、队列、数组。。。随君所好)
然后,
解释都在注释里

#include <cstdio>
using namespace std;
const int MAXN = 1000001;
int num[MAXN],q[MAXN],it[MAXN],q1[MAXN],it1[MAXN];
/*要求最大和最小,q-min,q1-max
it&&it1记录q和q1中元素原来所在位置
num记录读入的值
*/
int ALL,Begin,End,Begin1,End1,pr[MAXN];
/*
ALL充当二次输出的Index,pr则记录二次输出的值
Begin,End记录q的队首&&队尾
Begin1,End1记录q1的队首&&队尾
*/
int main()
{
   
    int n,k,i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值