题解:桥的长度为1e9如果直接用dp是不行,这样会导致时间,内存都会爆,所以这里需要用使得石子的位置离散化,如果两个石子的距离大于T,就使得两者的距离变为:(stone[i]-stone[i-1])%T+T,如果不大于T保持原来的距离即可。具体见代码。
描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
输入描述:
第一行有一个正整数L ,表示独木桥的长度。
第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数
第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。
所有相邻的整数之间用一个空格隔开。
输出描述:
只包括一个整数,表示青蛙过河最少需要踩到的石子数。
示例1
输入:
10 2 3 5 2 3 5 6 7
复制输出:
2
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<map>
using namespace std;
// int stone[105];
int dp[5005];
int stone[105];
#define inf 0x7f7f7f7f
int idx[5006];
int main(){
int L;
int S,T,M;
scanf("%d",&L);
scanf("%d%d%d",&S,&T,&M);
for(int i=1;i<=M;i++)
{
scanf("%d",&stone[i]);
}
sort(stone+1,stone+1+M);
stone[++M]=L;//这里需要把L给加上,使得L也与其他位置保持一致
memset(dp,inf,sizeof(dp));
int l=0;
for(int i=1;i<=M;i++)
{
if(stone[i]-stone[i-1]>T)
{
l+=(stone[i]-stone[i-1])%T+T;
}
else l+=stone[i]-stone[i-1];
idx[l]=1;
}
int Length=2*l;
dp[0]=0;
for(int i=1;i<=Length;i++)
{
for(int j=S;j<=T;j++)
{
if(i>=j)
dp[i]=min(dp[i],dp[i-j]+idx[i-j]);
}
}
int result=1e9;
for(int i=l;i<=Length;i++)
{
result=min(result,dp[i]);
}
printf("%d\n",result);
return 0;
}