第四章 大模型的参数高效微调:统一框架集成

本阶段的目标是将前面设计的各个核心模块(知识注入、对齐感知LoRA、宪法AI)整合到一个统一的训练与优化框架下。关键在于设计一个能够有效处理多个、可能冲突的学习目标的多目标优化器,并构建一个灵活、高效的完整训练流程,以实现大模型在特定领域知识注入和行为对齐上的协同提升。


4.1 多目标优化器 (Multi-objective Optimizer)

在我们的统一框架中,模型需要同时优化多个目标:特定领域知识的准确掌握(知识损失)、与用户偏好或指令的对齐(对齐损失)、遵守预设行为准则(宪法损失),以及基础任务的性能(任务损失)。这些目标之间可能存在协同,也可能存在冲突。因此,一个强大的多目标优化器是核心。

以下是MultiObjectiveOptimizer模块的PyTorch实现思路与改进建议:

Python

import torch
import torch.nn as nn
import torch.optim as optim
from collections import defaultdict
import numpy as np # 用于更高级的平衡策略

# --- 辅助:梯度平衡器 (示例,可替换为更高级实现) ---
class BasicGradientBalancer:
    """
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值