【斯坦福CS224W图机器学习】03 传统图机器学习方法--节点级别

1引言

Machine Learning Task

回顾一下机器学习任务。主要是三个级别的任务,节点级别(Node-level)的预测,边级别(Edge-level)的预测,图级别(Graph-level)的预测。

Traditional ML Pipeline 传统机器学习管道线

1.为节点/边/图设计特征 2.为所有的训练数据获取特征 3…训练一个经典的机器学习模型(随机森林、SVM、神经网络) 4.应用该模型到一个新的节点/边/图上

Feature Design 特征设计

在图上使用高效的特征是‘良好的测试性能’的关键。传统的机器学习pipeline使用手工设计的特征(hand-designed features)。在这一节中,我们会回顾节点级别(Node-level),边级别(Edge-level),图级别(Graph-level)的传统特征。为了简单起见,我们关注无向图

Machine Learning in Graphs 图机器学习

Goal:为一组objects做预测

Design choices
特征:d维向量
objects:节点,边,节点集,整个图
目标函数:尝试预测的标签

我们可能想到,将图表示成边和节点,然后学习一个函数(对于每个节点,都能给出真实的预测)。

在这里插入图片描述

2节点级别的任务和特征

Node-level features节点级别的特征

Goal:描述图中节点的结构和位置(Node degree、Node centrality、Clustering coefficient、Graphlets)

在这里插入图片描述

节点特征:节点的度Node degree

节点的度:节点邻居节点的个数

在这里插入图片描述

节点特征:节点中心性Node centrality

节点的度数只关注节点拥有的邻居个数,没有关注节点的重要程度。节点中心性将节点在图中的重要程度考虑在内。有几种不同的重要程度建模方法:

  • Engienvector centrality
  • Betweenness centrality
  • Closeness centrality
  • and many others

Eigenvector centrality

在这里插入图片描述

Betweenness centrality

在这里插入图片描述

Closeness centrality:

在这里插入图片描述

节点特征:Clustering coefficient

聚类稀疏衡量邻居的连接程度

在这里插入图片描述

节点特征:Graphlets图集

在这里插入图片描述

在这里插入图片描述

3总结

上文我们介绍了几种方法获取节点特征。可以分类如下

基于重要性的特征:捕获节点的重要性

  • Node degree只需计算相邻节点的数量
  • Different node centrality measures图中相邻节点的重要性不同的建模选择:特征向量中心性、中间中心性、接近中心性

基于结构的特征:捕获节点周围局部邻域的拓扑特性

  • Node degree计算相邻节点的数量
  • Clustering coefficient测量相邻节点的连接方式
  • Graphlet count vector计算不同图形中出现的次数
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值