二分搜索树
二分搜索树是一颗二叉树,二分搜索树的每个节点的值:大于其左子树的所有节点的值,小于其右子树的所有节点的值,每一颗子树也是二分搜索树,二分搜索树存储的元素必须具有可比较性
二分搜索树的定义
public class BST<E extends Comparable<E>> {
private class Node {
public E e;
public Node left;
public Node right;
public Node(E e) {
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST() {
root = null;
size = 0;
}
//二分搜索树是否为空
public boolean isEmpty() {
return size == 0;
}
//返回二分搜索树元素个数
public int size() {
return size;
}
}
向二分搜索树中添加元素
//向二分搜索树中添加新的元素e
public void add(E e) {
root = add(root, e);
}
//向以node为根的二分搜索树中插入元素e,递归算法
//返回插入新节点后二分搜索树的根
private Node add(Node node, E e) {
if (node == null) {
size++;
return new Node(e);
}
if (e.compareTo(node.e) < 0) {
node.left = add(node.left, e);
} else if (e.compareTo(node.e) > 0) {//之所以是else if,忽略了两者相等的情况,如果相等则什么都不做
node.right = add(node.right, e);
}
return node;
}
二分搜索树的查询操作
//看二分搜索树中是否包含元素e
public boolean contains(E e) {
return contains(root, e);
}
//看以node为根的二分搜索树中是否包含元素e,递归算法
private boolean contains(Node node, E e) {
if (node == null) {
return false;
}
if (e.compareTo(node.e) == 0) {
return true;
} else if (e.compareTo(node.e) > 0) {
return contains(node.right, e);
} else {
return contains(node.left, e);
}
}
二分搜索树的前序遍历
public void preOrder() {
preOrder(root);
}
//前序遍历以node为根的二分搜索树,递归算法
private void preOrder(Node node) {
if (node == null) {
return ;
}
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}
为二分搜索树添加打印函数,以前序遍历为例
@Override
public String toString() {
StringBuilder res = new StringBuilder();
generateBSTString(root, 0, res);
return res.toString();
}
//生成以node为根节点,深度为depth的描述二叉树的字符串
private void generateBSTString(Node node, int depth, StringBuilder res) {
if (node == null) {
res.append(generateDepthString(depth) + "null\n");
return;
}
res.append(generateDepthString(depth) + node.e + "\n");
generateBSTString(node.left, depth + 1, res);
generateBSTString(node.right, depth + 1, res);
}
private String generateDepthString(int depth) {
StringBuilder res = new StringBuilder();
for (int i = 0; i < depth; i++) {
res.append("--");
}
return res.toString();
}
二分搜索树的中序和后序遍历
二分搜索树的中序遍历的结果就是二分搜索树排序后的结果
public void inOrder() {
inOrder(root);
}
//中序遍历以node为根的二分搜索树,递归算法
private void inOrder(Node node) {
if (node == null) {
return ;
}
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
后序遍历的一个应用:为二叉树释放内存,比如在C++这些需要手动释放内存空间的语言来说,对二叉树内存的释放就需要使用后序遍历
public void posOrder() {
posOrder(root);
}
//中序遍历以node为根的二分搜索树,递归算法
private void posOrder(Node node) {
if (node == null) {
return ;
}
posOrder(node.left);
posOrder(node.right);
System.out.println(node.e);
}
对前序,中序和后序的深入理解
对于一个二叉树的遍历来说,抛开打印的情况,也就是,先遍历左子树,在遍历右子树,在真正的递归过程中,会来到每个节点三次,何谓三次?比如根节点为5,左孩子为3,右孩子为4,首先来到5,接着访问5的左孩子3,访问3的左孩子,返回到3,在访问3的右孩子,在返回到3,依次类推,来到每个节点三次也就是说会进以这个节点为参数的
函数三次,前序遍历就是第一次访问该节点时,打印该节点的值,中序就是第二次访问该节点时,打印该节点值,后序就是第三次访问该节点的时候打印该节点的值。
递归和非递归方式实现二叉树的先中后序遍历
二分搜索树的层序遍历
层序遍历的应用:更快的找到问题的解,常用于和图有关的最短路径的算法设计中
public void levelOrder() {
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()) {
Node cur = queue.poll();
System.out.print(cur.e + " ");
if (cur.left != null) {
queue.offer(cur.left);
}
if (cur.right != null) {
queue.offer(cur.right);
}
}
System.out.println();
}
删除二分搜索树的最小值和最大值
//寻找二分搜索树的最小元素
public E minimum() {
if (size == 0) {
throw new IllegalArgumentException("BST is empty!");
}
return minimum(root).e;
}
//返回以Node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node) {
if (node.left == null) {
return node;
}
return minimum(node.left);
}
//寻找二分搜索树的最大元素
public E maximum() {
if (size == 0) {
throw new IllegalArgumentException("BST is empty!");
}
return maximum(root).e;
}
//返回以Node为根的二分搜索树的最大值所在的节点
private Node maximum(Node node) {
if (node.right == null) {
return node;
}
return maximum(node.right);
}
//从二分搜索树中删除最小值所在的节点,返回最小值
public E removeMin() {
E ret = minimum();
root = removeMin(root);
return ret;
}
//删除掉以node为根的二分搜索树中的最小节点
//返回删除节点后新的二分搜索树的根
private Node removeMin(Node node) {
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
//从二分搜索树中删除最大值所在的节点,返回最大值
public E removeMax() {
E ret = maximum();
root = removeMax(root);
return ret;
}
//删除掉以node为根的二分搜索树中的最大节点
//返回删除节点后新的二分搜索树的根
private Node removeMax(Node node) {
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
node.right = removeMax(node.right);
return node;
}
删除二分搜索树的任意元素
//从二分搜索树中删除元素为e的节点
public void remove(E e) {
root = remove(root, e);
}
//删除以node为根的二分搜索树中值为e的节点,递归算法
//返回删除节点后新的二分搜索树的根
public Node remove(Node node, E e) {
if (node == null) {
return null;
}
if (e.compareTo(node.e) < 0) {
node.left = remove(node.left, e);
return node;
} else if (e.compareTo(node.e) > 0) {
node.right = remove(node.right, e);
return node;
} else {//e.compareTo(node.e) == 0
//待删除节点左子树为空的情况
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
//待删除节点右子树为空的情况
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
//待删除左右节点都不为空的情况
//找到比待删除节点大的最小节点,即待删除节点右子树的最小节点
//用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
node.right = null;
node.left = null;
return successor;
}
}