浏览器控制台提示:Error: NetworkError when attempting to fetch resource.

提示如下:

在这里插入图片描述
翻译结果就是:

错误:试图获取资源时出现NetworkError。

原因:

缺少对应的映射文件(sourcemap file)

解决方法一:

找到并打开该文件,搜索sourceMappingURL,删除类似//# sourceMappingURL=bootstrap.js.map的代码,之后报错退出即可

在这里插入图片描述
解决方法二:

补上对应的映射文件,一般下载的插件中,同目录下会有对应的map文件,把该文件添加到sourceMappingURL引用的路径中

扩展:sourcemap文件是什么?

Source map是js文件压缩后,文件的变量名替换对应的变量所在位置等元信息数据文件,通俗地理解就是Source map是一个储存着位置信息的信息文件,转换后代码的每一个位置所对应的转换前的位置,当出错的时候,除错工具会直接显示原始代码,而不是转换后的代码,给开发者提供了极大的便利。

比如js原变量是map,压缩后通过变量替换规则可能会被替换成a,这时source map文件会记录下这个mapping的信息,开发者在调试的时候如果有JS报错,浏览器就会通过解析这个map文件来重新merge压缩后的js,那么开发者就可以使用压缩前的代码来调试。

sourcemap文件一般会与min.js主文件放在同一个目录下。

提示:source map功能需要浏览器的支持,如主流浏览器Firefox、Chrome等都支持。Firefox默认开启,Chrome需要在Settings里勾选Enable JavaScript source maps选项,新版本的Chrome好像已经默认开启了。

### 解决 Jupyter Notebook 中的 NetworkError 问题 在使用 Jupyter Notebook 进行数据分析或模型训练时,可能会遇到 `NetworkError` 的情况。这种错误通常发生在尝试加载资源、运行代码单元格或者保存文件的过程中[^1]。 #### 可能的原因分析 以下是可能导致 `NetworkError` 出现的一些常见原因: - **浏览器兼容性问题**:某些版本的浏览器可能无法完全支持最新的 Jupyter 功能。 - **网络连接不稳定**:如果用户的互联网连接中断或速度较慢,则会引发此类错误。 - **服务器超载**:当多个用户同时访问同一台 Jupyter Server 或者长时间占用大量计算资源时,服务器可能出现过载现象。 - **扩展插件冲突**:安装了一些第三方 JavaScript 扩展(如 nbextensions),这些扩展可能存在 bug 并干扰正常操作。 #### 排查方法与解决方案 ##### 方法一:重启内核并清理缓存 有时简单的重启可以解决问题。执行以下命令来重新启动 Jupyter 内核以及清除浏览器缓存: ```bash jupyter notebook stop rm -rf ~/.local/share/jupyter/runtime/* ``` 之后再次启动服务即可恢复正常工作环境[^2]。 ##### 方法二:升级相关依赖库 确保所使用的 Python 版本及其配套组件是最新的也很重要。可以通过 pip 工具更新必要的包到最新稳定版: ```bash pip install --upgrade jupyter ipython matplotlib seaborn popper ``` 另外还可以考虑切换至 Anaconda 发行版中的 conda 渠道来进行管理软件包的操作[^3]: ```bash conda update --all ``` ##### 方法三:调整配置参数 对于频繁发生的断开重连状况,适当修改 timeout 设置或许有所帮助。编辑 `.jupyter/jupyter_notebook_config.py` 文件加入如下几行设定语句: ```python c.NotebookApp.allow_origin = '*' c.NotebookApp.open_browser = False c.NotebookApp.port = 9999 c.ContentsManager.root_dir = '~/notebooks/' ``` 上述更改允许跨域请求,并指定端口号为非默认值以防与其他程序发生冲突;同时也指定了笔记存储路径以便更好地组织项目结构。 ##### 方法四:更换浏览器测试 由于不同类型的客户端渲染引擎实现细节有所区别,在怀疑是由特定品牌引起的异常表现前先试试看其他主流选项如何响应同样的场景不失为明智之举之一。比如从 Chrome 切换成 Firefox 或 Safari 来观察是否存在差异性的反馈结果。 --- ### 示例代码片段展示多张相同数字图像绘制过程 下面给出了一段用于可视化 MNIST 数据集中手写体 '7' 的例子作为参考用途说明matplotlib绘图功能强大之处的同时也间接体现了良好编码习惯的重要性——清晰易懂且具备可重复利用价值高的特点。 ```python import numpy as np from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt mnist = fetch_openml('mnist_784', version=1) X_train, y_train = mnist["data"], mnist["target"] fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True) ax = ax.flatten() for i in range(25): img = X_train[y_train=='7'][i].reshape((28, 28)) ax[i].imshow(img, cmap='Greys') plt.tight_layout() plt.show() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值