八股系列 Flink

Flink 和 SparkStreaming的区别

设计理念方面

SparkStreaming:使用微批次来模拟流计算,数据已时间为单位分为一个个批次,通过RDD进行分布式计算

Flink:基于事件驱动,是面向流的处理框架,是真正的流式计算

架构方面

SparkStreaming:角色包括 Master、Worker、Driver、Executor

Flink:角色包括 Jonmanager、Taskmanager和slot

窗口计算方面

SparkStreaming:只支持基于处理时间的窗口操作

Flink:可以支持时间窗口,也支持基于事件的窗口如滑动、滚动、会话窗口等

时间机制方面

SparkStreaming:只支持处理时间,产生数据堆积时候,处理时间和事件时间误差明显

Flink:支持事件时间、注入时间、处理时间,同事支持watermark机制处理迟到的数据,在处理大乱序的实时数据更有优势

容错机制方面

SparkStreaming:基于RDD或对宽依赖添加CheckPoint,利用 SparkStreaming的 direct方式与kafka保证 exactly once

Flink:基于状态添加CheckPoint,通过俩阶段提交协议来保证 exactly once

吞吐量与延迟方面

SparkStreaming:基于微批次的处理使得吞吐量是最大的,但付出了延迟的代价,只能做到秒级处理

Flink:数据是逐条处理,容错机制很轻量级,兼顾了吞吐量的同时又有很低的延迟支持毫秒级处理

Flink 运行时组件

作业管理器(JobManager)

  • 控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个唯一的Jobmanager所控制执行
  • Jobmanager会先接收到要执行的应用程序,这个应用程序会包括:作业图( Job Graph)、逻辑数据流图( ogical dataflow graph)和打包了所有的类、库和其它资源的JAR包。
  • Jobmanager会把Jobgraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(Executiongraph),包含了所有可以并发执行的任务。Job Manager会向资源管理器(Resourcemanager)请求执行任务必要的资源,也就是任务管理器(Taskmanager)上的插槽slot。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的 Taskmanager上。而在运行过程中Jobmanagera会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调

任务管理器(TaskManager)

  • Flink中的工作进程。通常在 Flink中会有多个Taskmanager运行,每个Taskmanager都包含了一定数量的插槽(slots)插槽的数量限制了Taskmanager能够执行的任务数量
  • 启动之后,Taskmanager会向资源管理器注册它的插槽;收到资源管理器的指令后, Taskmanager就会将一个或者多个插槽提供给Jobmanager调用。Jobmanager就可以向插槽分配任务(tasks)来执行了。
  • 在执行过程中,一个Taskmanager可以跟其它运行同一应用程序的Taskmanager交换数据

资源管理器(ResourceManager)

  • 主要负责管理任务管理器(TaskManager)的插槽(slot)Taskmanger插槽是Flink中定义的处理资源单元
  • Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、K8s,以及 standalone部署。
  • Jobmanager申请插槽资源时,Resourcemanager会将有空闲插槽的Taskmanager分配给Jobmanager。如果 Resourcemanager没有足够的插槽来满足 Jobmanager的请求,它还可以向资源提供平台发起会话,以提供启动 Taskmanager进程的容器。

分发器(Dispatcher)

  • 可以跨作业运行,它为应用提交提供了REST接口
  • 当一个应用被提交执行时,分发器就会启动并将应用移交给Jobmanage
  • Dispatcher他会启动一个WebUi,用来方便地展示和监控作业执行的信息。

Flink作业提交流程 on Yarn

  1. Flink任务提交后,Client向HDFS上传Flink的Jar包和配置
  2. 向ResourceManager请求一个YARN容器启动ApplicationMaster,ApplicationMaster启动后加载Flink的Jar包和配置构建环境
  3. 启动JobManager,JobManager和ApplicationMaster(AM)运行在同一个容器中
  4. ApplicationMaster向ResourceManager申请启动TaskManager所需资源
  5. ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager
  6. NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager
  7. TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。

Flink的执行图

Flink 中任务调度执行的图,按照生成顺序可以分成四层:
逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)

逻辑流图(StreamGraph)

这是根据用户通过 DataStream API 编写的代码生成的最初的 DAG 图,用来表示程序的拓扑结构。这一步一般在客户端完成

作业图(JobGraph)

StreamGraph 经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为: 将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph 一般也是在客户端生成的,在作业提交时传递给 JobMaster。

执行图(ExecutionGraph)

JobMaster 收到 JobGraph 后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是 JobGraph 的并行化版本,是调度层最核心的数据结构。ExecutionGraph 更进一步细化了 JobGraph 中的任务,并考虑了容错、调度等因素。

物理图(Physical Graph)

JobMaster 生成执行图后, 会将它分发给 TaskManager;各个 TaskManager 会根据执行图
部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)

这只是具体执行层面的图,并不是一个具体的数据结构。

Flink中的并行度(Parallelism)

        在 Flink 程序执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。每个算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。

任务槽和并行度的关系

  • task slot 是静态的概念 ,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;
  • 并行度(parallelism)是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
  • 换句话说,并行度如果小于等于集群中可用slot的总数,程序是可以正常执行的,因为slot不一定要全部占用,有十分力气可以只用八分;而如果并行度大于可用slot总数,导致超出了并行能力上限,那么心有余力不足,程序就只好等待资源管理器分配更多的资源了

算子链(Operator Chain)

        一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类

一对一直通(One-to-one,forwarding)

        数据流维护着分区以及元素的顺序。source算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着 map 算子的子任务,看到的元素个数和顺序跟 source 算子的子任务产生的完全一样,保证着“一对一”的关系

重分区(Redistributing)

       数据流的分区会发生改变。每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。例如,keyBy()是分组操作,本质上基于键(key)的哈希值(hashCode)进行了重分区;而当并行度改变时,比如从并行度为 2 的 window 算子,要传递到并行度为 1 的 Sink 算子,这时的数据传输方式是再平衡(rebalance),会把数据均匀地向下游子任务分发出去。

合并算子链

        在 Flink 中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分。这样的技术被称为合并算子链。     

Flink中的状态

算子状态(Operator State)

       

        Operator State可以用在所有算子上,每个算子子任务或者说每个算子实例共享一个状态,流入这个算子子任务的数据可以访问和更新这个状态。

        算子状态的实际应用场景不如 Keyed State 多,一般用在 Source 或 Sink 等与外部系统连接
的算子上
,或者完全没有 key 定义的场景。比如 Flink 的 Kafka 连接器中,就用到了算子状态。 在我们给 Source 算子设置并行度后,Kafka 消费者的每一个并行实例,都会为对应的主题( topic)维护一个偏移量, 作为算子状态保存起来。
        对于 Operator State 来说因为不存在 key,所有数据发往哪个分区是不可预测的;也就是说,当发生故障重启之后,我们不能保证某个数据跟之前一样,进入到同一个并行子任务、访问同一个状态。所以 Flink 无法直接判断该怎样保存和恢复状态,而是提供了 接口,让我们根据业务需求自行设计状态的快照保存(snapshot)和恢复(restore)逻辑。

支持的结构类型

广播状态(BroadcastState):有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。

列表状态(ListState)

联合列表状态(UnionListState)

按键分区状态(Keyed State)

        状态是根据输入流中定义的键(key)来维护和访问的,相当于用key来进行物理隔离,所以只能定义在按键分区流(KeyedStream)中,也就 keyBy 之后才可以使用。

        不同 key 对应的 Keyed State可以进一步组成所谓的键组(key groups),每一组都对应着一个并行子任务。键组是 Flink 重新分配 Keyed State 的单元,键组的数量就等于定义的最大并行度。当算子并行度发生改变时,Keyed State 就会按照当前的并行度重新平均分配,保证运行时各个子任务的负载相同。

支持的结构类型
  • 比较常用的:ValueState、ListState、MapState
  • 不太常用的:ReducingState 和 AggregationState

Flink的水位线(watermark)

时间语义

  • 处理时间:执行处理操作的机器的的系统时间
  • 事件时间:数据生成的时间,自带一个时间戳(timestamp)

水位线定义

        在事件时间的语义下,不依赖于系统时间,基于数据自带的时间戳去定义一个时钟,表示当前时间的进展

水位线的特性

  • 水位线本质是一个基于数据生成的、单调递增的时间戳
  • 插入数据流中的一个标记
  • 通过设置延迟保证正确处理乱序数据
  • 水位线t,代表数据流中事件时间已经到达t,时间戳小<= t的数据均到齐了

水位线的传递

        在实际计算过程中,Flink 的算子一般分布在多个并行的分区上,Flink 需要将 Watermark 在并行环境向下游传播。如下图所示,由于上游各分区的处理速度不同,到达当前算子的Watermark 也会有先后之分,每个算子子任务会维护来自上游不同分区的Watermark 信息,这是一个列表。每当一个上游传递过来一个水位线,实例会判断该水位线是否大于列表中记录的数值,如果大于则更新水位线。接着实例会遍历整个水位线列表找出最小值作为实例的事件时间,最后,实例会将更新的EventTime作为 Watermark 发送给下游所有算子子任务

Flink的窗口(Window )

        在 Flink 中,我们可以把窗口理解成一个“桶”。在 Flink 中,窗口可以把流切割成有限大小的多个“存储桶”(bucket);每个数据都会分发到对应的桶中,当到达窗口结束时间时,就对每个桶中收集的数据进行计

窗口的分类

滚动窗口(Tumbling Windows)

        滚动窗口有固定的大小,是一种对数据进行“均匀切片”的划分方式。窗口之间没有重叠,也不会有间隔,是“首尾相接”的状态。所以每个数据都会被分配到一个窗口,而且只会属于一个窗口
        滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小(window size)。比如我们可以定义一个长度为 1 小时的滚动时间窗口,那么每个小时就会进行一次统计;或者定义一个长度为 10 的滚动计数窗口,就会每 10 个数进行一次统计。

滑动窗口(Sliding Windows)

        滑动窗口的大小也是固定的。区别在于,窗口之间并不是首尾相接的,而是可以“错开”一定的位置。如果看作一个窗口的运动,那么就像是向前小步“滑动”一样。既然是向前滑动,那么每一步滑多远,就也是可以控制的。
         所以定义滑动窗口的参数有两个:除去窗口大小(window size)之外,还有一个“滑动步长”(window slide),它表示当前窗口的开始时间距下次窗口开始时间的时间间隔,也就是窗口计算的频率。例如,我们定义一个长度为 1 小时、滑动步长为 5 分钟的滑动窗口,那么就会统计 1 小时内的数据,每 5 分钟统计一次。同样,滑动窗口可以基于时间定义,也可以基于数据个数定义。

会话窗口(Session Windows)

        会话窗口长度不固定、起始和结束时间不确定,各个分区窗口之间无关联,会话窗口之间不会重叠。会话窗口只能基于时间定义,终止的标志是隔一段时间没有数据到来。
        参数可设置静态固定的size,两个会话窗口之间的最小距离,也可以自定义提取器动态提取最小间隔gap的值
在Flink底层,对会话窗口有特殊的处理:每来一个新数据,都会创建一个新会话窗口,判断已有窗口之间的距离。如果小于给定的size,就将它们合并。

全局窗口(Global Windows)

        “全局窗口”,这种窗口全局有效,会把相同 key 的所有数据都分配到同一个窗口中;说直白一点,就跟没分窗口一样。无界流的数据永无止尽,所以这种窗口也没有结束的时候,默认是不会做触发计算的。如果希望它能对数据进行计算处理,还需要自定义“触发器”(Trigger)。

Flink的状态持久化checkpoint和savepoint

        在Flink流处理应用中的任务都是有状态的,而为了快速访问这些状态一般会直接放在堆内存里,为了发生故障Flink可以恢复应用的状态,就需要对某个时间点所有的状态状态进行持久化,而Flink的状态持久化分为俩种,checkpoint和savepoint

检查点(Checkpoint)

        检查点其实就是所有任务的状态在某个时间点的一个快照。简单来讲,就是一次“存盘”,让我们之前处理数据的进度不要丢掉。在一个 流应用程序运行时,Flink 会定期保存检查点,在检查点中会记录每个算子的 id 和状态;如果发生故障,Flink 就会用最近一次成功保存的检查点来恢复应用的状态,重新启动处理流程, 就如同“读档”一样。

ckeckpoint流程

检查点分界线(Barrier)

        当进行checkpoint时,TaskManager 会让所有的 Source 任务把自己的偏移量(算子状态)保存起来,并将带有检查点 ID 的分界线(barrier)插入到当前的数据流中,然后像正常的数据一样像下游传递,之后 Source 任务就可以继续读入新的数据了。
        Barrier是种特殊的数据形式,把一条流上的数据按照不同的检查点分隔开,所以就叫作检查点的“分界线”(Checkpoint Barrier)。当收到Barrier这个特殊数据的时候,当前算子就把当前的状态进行快照。所以barrier 可以理解为“之前所有数据的状态更改保存入当前检查点

分布式快照算法

        在一条单一的流上,数据依次进行处理,顺序保持不变,可是对于处理多个分区的传递时数据的顺序就会出现乱序的问题。

算法的核心就是两个原则:

  • 当上游任务向多个并行下游任务发送 barrier 时,需要广播出去
  • 而当多个上游任务向同一个下游任务传递 barrier 时,需要在下游任务执行“分界线对齐”(barrier alignment)操作,也就是需要等到所有并行分区的 barrier 都到齐,才可以开始状态的保存。

检查点保存的算法具体过程如下:

  1. JobManager 会周期性地向每个 TaskManager 发送一条带有新检查点 ID 的消息,通过这种方式来启动检查点。收到指令后,TaskManger 会在所有 Source 任务中插入一个分界线(barrier),并将偏移量保存到远程的持久化存储中;
  2. 状态存入持久化存储之后,会返回通知给 Source 任务。Source 任务就会向 JobManager 确认检查点完成,然后像数据一样把 barrier 向下游任务传递
  3. Map 任务没有状态,所以直接将 barrier 继续向下游传递。这时由于进行了 keyBy 分区, 所以需要将 barrier 广播到下游并行的两个 Sum 任务。同时,Sum 任务可能收到来自上游两个并行 Map 任务的 barrier,所以需要执行“分界线对齐”操作
  4. 各个分区的分界线都对齐后,就可以对当前状态做快照,保存到持久化存储了。存储完成之后,同样将 barrier 向下游继续传递,并通知 JobManager 保存完
  5. 应用程序的所有任务的状态保存完成将各个状态组成一个完整的快照(相当于很多碎片组成一个完整的拼图),本次检查点已完成。

注意分界线对齐要求先到达的分区做缓存等待,一定程度上会影响处理的速度。当出现背压( backpressure )时,下游任务会堆积大量的缓冲数据,检查点可能需要很久才可以保存完毕;

分界线对齐

        当有多个数据流输入的情况下,假设有三个输入流a、b、c,首先从a中接收到了barriers n,但是b/c的barriers n还没到,如果他继续处理a流的barriers n后面的数据,就会导致在处理b/c的barriers n的数据的同时,还会处理了a的barriers n+1的数据,计算状态会混在一起,这个checkpoint也就不合理了,所以要等b、c的barriers n到了,再进快照,这个等待所有分界线到达的过程,称为“分界线对齐”(barrier alignment)

任务从检查点恢复状态步骤
  1. 重启应用 :遇到故障之后,第一步当然就是重启。我们将应用重新启动后,所有任务的状态会清空;
  2. 读取检查点,重置状态:找到最近一次保存的检查点,从中读出每个算子任务状态的快照,分别填充到对应的状态 中。这样,Flink 内部所有任务的状态,就恢复到了保存检查点的那一时刻;
  3. 重放数据:为了不丢数据,我们应该从保存检查点后开始重新读取数据,这可以通过 Source 任务向外部数据源重新提交偏移量(offset)来实现;
  4. 继续处理数据 :接下来,我们就可以正常处理数据了;

保存点(savepoint)

        保存点在原理和形式上跟检查点完全一样,也是状态持久化保存的一个快照;区别在于,保存点是自定义的镜像保存,所以不会由 Flink 自动创建,而需要用户手动触发。这在有计划地停止、重启应用时非常有用。

状态后端

        在 Flink 中,状态的存储、访问以及维护,都是由一个可插拔的组件决定的,这个组件就 叫作状态后端(state backend)。状态后端主要负责两件事:一是本地的状态管理,二是将检查点(checkpoint)写入远程的持久化存储
         状态后端是一个“开箱即用”的组件,可以在不改变应用程序逻辑的情况下独立配置。 Flink 中提供了两类不同的状态后端,一种是“哈希表状态后端”(HashMapStateBackend),另 一种是“内嵌 RocksDB 状态后端”(EmbeddedRocksDBStateBackend)。如果没有特别配置, 系统默认的状态后端是 HashMapStateBackend

哈希表状态后端(HashMapStateBackend)

         这种方式就是我们之前所说的,把状态存放在内存里。具体实现上,哈希表状态后端在内
部会直接把状态当作对象(objects),保存在 Taskmanager 的 JVM 堆(heap)上。普通的状态, 以及窗口中收集的数据和触发器(triggers),都会以键值对(key-value)的形式存储起来,所 以底层是一个哈希表(HashMap),这种状态后端也因此得名。
         HashMapStateBackend 是将本地状态全部放入内存的,这样可以获得最快的读写速度,使
计算性能达到最佳,代价则是内存的占用。

内嵌 RocksDB 状态后端(EmbeddedRocksDBStateBackend)

         RocksDB 是一种内嵌的 key-value 存储介质,可以把数据持久化到本地硬盘。配置 EmbeddedRocksDBStateBackend 后,会将处理中的数据全部放入 RocksDB 数据库中RocksDB
默认存储在 TaskManager 的本地数据目录里。数据被存储为序列化的字节数组(Byte Arrays),读写操作需要序列化/反序列化,因此状态的访问性能要差一些。
        由于它会把状态数据落盘,而且支持增量化的检查点,所以在状态非常大、窗口非常长、
键/值状态很大的应用场景中是一个好选择
,同样对所有高可用性设置有效。

Flink的精确一次(EXACTLY-ONCE)

        完整的流处理应用,包括了数据源、流处理器、外部存储系统三个部分。这个完整应用的一致性,叫做端到端的状态一致性,取决于三个组件中最弱的一环。能否达到至少一次(at-least-once)一致性级别,主要看数据源能否重放数据。而能否达到exactly-once级别,数据源、流处理器内部、外部存储系统都要有相应的保证机制。

  • Source:需要外部数据源可以重新设置数据的读取位置,如Kafka的offset可以支持。
  • Transformation:借助于checkpoint实现
  • Sink:要求故障恢复时,数据不会重复写入到外部系统,通常有俩类解决方式,一种是幂等写入如Redis中键值存储,或者关系型数据库(如 MySQL),自定义主键的ck和es,另一种是事务写入两阶段事务提交。

Flink实现事务写入

        事务(transaction)是应用程序中一系列严密的操作,所有操作必须成功完成,否则在每个操作中所做的所有更改都会被撤消。事务写入的基本思想就是:用一个事务来进行数据向外部系统的写入,这个事务是与检查点绑定在一起的。当 Sink 任务遇到 barrier 时,开始保存状态的同时就开启一个事务,接下来所有数据的写入都在这个事务中;待到当前检查点保存完毕时,将事务交,所有写入的数据就真正可用了。如果中间过程 出现故障,状态会回退到上一个检查点,而当前事务没有正常关闭(因为当前检查点没有保存完),所以也会回滚,写入到外部的数据就被撤了。
具体来说,又有两种实现方式:预写日志(WAL)和两阶段提交(2PC)

两阶段提交(two-phase-commit,2PC)

        它的想法是分成两个阶段:先做“预提交”,等检查点完成之后再正式提交。这种提交方式是真正基于事务的,它需要外部系统提供事务支持。具体步骤是:

①当第一条数据到来时,或者收到检查点的分界线时,Sink 任务都会启动一个事务。
②接下来接收到的所有数据,都通过这个事务写入外部系统;这时由于事务没有提交,所
以数据尽管写入了外部系统,但是不可用,是“预提交”的状态。
③当 Sink 任务收到 JobManager 发来检查点完成的通知时,正式提交事务,写入的结果就
真正可用了。

        当中间发生故障时,当前未提交的事务就会回滚,于是所有写入外部系统的数据也就实现了撤回。这种方式充分利用了 Flink 现有的检查点机制:分界线的到来,就标志着开始一个新事务;而收到来自 JobManager 的 checkpoint 成功的消息,就是提交事务的指令每个结果数据的写入,依然是流式的,不再有预写日志时批处理的性能问题;最终提交时,也只需要额外发送一个确认信息。所以 2PC 协议不仅真正意义上实现了 exactly-once ,而且通过搭载 Flink 的检查点机制来实现事务,只给系统增加了很少的开销。 Flink 提供 TwoPhaseCommitSinkFunction 接口,方便我们自定义实现两阶段提交的 SinkFunction 的实现,提供了真正端到端的 exactly-once 保证。

预写日志(write-ahead-log,WAL)

预写日志(WAL)就是一种非常简单的方式。具体步骤是:
①先把结果数据作为日志(log)状态保存起来
②进行检查点保存时,也会将这些结果数据一并做持久化存储
③在收到检查点完成的通知时,将所有结果一次性写入外部系统。

        这种方式类似于检查点完成时做一个批处理,一次性的写入会带来一些性能上的问题;而优点就是比较简单,由于数据提前在状态后端中做了缓存,所以无论什么外部存储系统,理论上都能用这种方式一批搞定。在 Flink 中 DataStream API 提供了GenericWriteAheadSink类,用来实现这种事务型的写入方式。

Flink的CEP

        复杂事件处理(Complex Event Processing,CEP):针对流处理而言,分析的是低延迟、频繁产生的事件流,检测特定的数据组合

CEP的流出可分为三个步骤:

1、定义一个匹配规则
2、将匹配规则应用到事件流上,检测满足规则的复杂事件
3、对检测到的复杂事件进行处理,得到结果进行输出
模式(Pattern):CEP第一步定义对匹配规则

Flink处理反压的优化

        系统在一个临时负载峰值期间接收数据的速率大于其处理速率的一种场景(通俗的讲:接收速度 > 接收速度),处理不当会导致资源耗尽,数据丢失

  • 消息发送太快,消息接收太慢,产生消息拥堵
  • 发生消息拥堵后,系统会自动降低消息发生速度

分析产生反压原因

  • 观察subTasks,可观察到各个task处理数据的情况,是否出现了数据倾斜的问题;
  • 观察FlameGraph火焰图,可以观察到瓶颈算子中的哪部分计算逻辑消耗较大
  • 利用 Metrics 定位那块的处理耗时

导致反压的常见问题和解决方案

频繁查询数据库扩充数据或调用外部 API
  • 使用缓存:小量数据可以使用状态缓存或者 Redis(冷热数据),尽量不要频繁查询数据库。使用缓存需注意缓存穿透问题。
  • 布隆过滤器:对于数据量很大,且允许一定误判率的情况下,可先使用布隆过滤器对数据进行过滤。(黑名单白名单过滤问题)
数据倾斜
  • 俩阶段聚合,第一次使数据打散;
  • 自定义partition,按照业务自定义分组实现数据打散
代码的执行效率低
  • 优化代码,优化处理逻辑
  • 选用性能较高的方式算子实现业务
资源不足
  • 增加并行度
  • 增加核数
  • 增加内存
  • 增加缓冲区大小
sink端写入效率较低
  • 批量操作:Sink 端的所有操作都使用批量操作,减小 IO 次数,并且事务一次性提交;
  • 异步写入:异步写入外部存储可以大大提高效率,但要注意数据丢失问题和乱序问题。

Flink如何解决数据迟到的问题

设置水位线延迟时间

        按照业务的情况,如果一般数据延迟在3秒内,那么可以设置水位线延迟时间为3秒,通过可以解决大部分数据迟到的问题

允许窗口处理迟到数据

        由于大部分乱序数据已经被水位线的延迟等到了,所以往往迟到的数据不会太多。这样,我们会在水位线到达窗口结束时间时,先快速地输出一个近似正确的计算结果; 然后保持窗口继续等到延迟数据,每来一条数据,窗口就会再次计算,并将更新后的结果输出。这样就可以逐步修正计算结果,最终得到准确的统计值了。

迟到的数据放在侧输出流

        即使有了前面的双重保证,可窗口不能一直等下去,最后总要真正关闭。窗口一旦关闭,后续的数据就都要被丢弃了。只能用窗口的侧输出流来收集关窗以后的迟到数据。这种方式是最后“兜底”的方法,只能保证数据不丢失;因为窗口已经真正关闭,所以是无法基于之前窗口的结果直接做更新的。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值