关于numpy中的cumsum

本文深入解析了numpy中cumsum函数的使用方法,包括如何在不同轴上进行累加运算,以及如何将该函数应用于pd.Series和DataFrame数据结构进行绘图。详细介绍了cumsum函数在处理一维和二维数组时的行为差异。
摘要由CSDN通过智能技术生成

关于numpy中的cumsum函数

a=np.arange(20).reshape(4,5).cumsum()

这里的意思是创建以4x5的数组,借助help(np.cumsum)
“Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array.”
这句话的意思表示将4x5的数组直接拉平进行累加,得到一个一维的数组。cumsum函数的格式如图`

cumsum(a, axis=None, dtype=None, out=None)
a=np.arange(20).reshape(4,5).cumsum(0)#这个表示竖着累加
a=np.arange(20).reshape(4,5).cumsum(1)#这个表示横着累加

如果代码是这样

s=pd.Series(np.random.randn(10).cumsum())
s.plot()

这表示Series的数据结构,是一个10x1(视为nx1)的,plot时以1:n为横坐标,得出的正态分布数字为纵坐标,进行plot的操作,Dataframe同理

对于plot(y)
如果y是mxn的数组,以1:m为横坐标,y中的每一列元素为y坐标,绘制n条曲线。
如果y是nx1或者是1xn的数组,则以1:n为横坐标,参数为纵坐标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值