Task04:深度学习简介

一、深度学习的三个步骤

我们都知道机器学习有三个step,对于deep learning其实也是3个步骤:
在这里插入图片描述

  • Step1:神经网络(Neural network)
  • Step2:模型评估(Goodness of function)
  • Step3:选择最优函数(Pick best function)

二、神经网络

神经网络(Neural network)里面的节点,类似我们的神经元。
在这里插入图片描述
神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)。在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。

1、完全连接前馈神经网络

前 馈 ( f e e d f o r w a r d ) 前馈(feedforward) feedforward也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
如下图所示,

  • 当已知权重和偏差时输入(1,-1)​(1,−1)​的结果
  • 当已知权重和偏差时输入(-1,0)(−1,0)的结果
    在这里插入图片描述
    上图是输入为1和-1的时候经过一系列复杂的运算得到的结果。
    在这里插入图片描述
    当输入0和0时,则根据一系列复杂的运算,得到结果为0.51和0.85。
    在这里插入图片描述
    所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,其输入为一个向量,对应的输出也为一个向量
    不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况

全链接和前馈的理解

  • 输入层(Input Layer):1层
  • 隐藏层(Hidden Layer):N层
  • 输出层(Output Layer):1层

如下图所示:
全链接(Fully Connect):因为layer1与layer2之间两两都有连接。
前馈:因为传递方向是由后往前传。
在这里插入图片描述
深度的理解
Deep = Many hidden layer。随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。
在这里插入图片描述

2、矩阵计算

如下图所示,输入是 [ 1 − 2 − 1 1 ] \left[\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right] [1121],输出为 [ 0.98 0.12 ] \left[\begin{array}{l}0.98 \\ 0.12\end{array}\right] [0.980.12]
计算方法是:sigmoid(权重w【黄色】 * 输入【蓝色】+ 偏移量b【绿色】)= 输出。

在这里插入图片描述
其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。
假设有很多层的情况下,计算方法就像是嵌套。
在这里插入图片描述
所以整个神经网络运算就相当于一连串的矩阵运算。
本质:通过隐藏层进行特征转换
把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)。而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)。然后通过一个多分类器(可以是softmax函数)得到最后的输出y。

三、模型评估

对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对y和 y ^ \hat{y} y^​ 的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。
在这里插入图片描述

总体损失

对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数\thetaθ,来最小化总体损失L
在这里插入图片描述

四、选择最优函数

如何找到最优的函数和最好的一组参数呢,我们用的就是梯度下降。
在这里插入图片描述
具体流程: θ θ \thetaθ θθ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合 ∇ L \nabla{L} L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小。
隐藏层数越多,所表现出来的效果越好。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值