线性方程组的迭代法

本文介绍了线性方程组的迭代求解方法,包括定常迭代法中的jscob、Gauss—Seidel迭代法以及松弛法,如Richardson、Jacobi松弛和超松弛(SOR)。这些方法适用于大规模矩阵计算,简化了程序设计并优化了资源使用。
摘要由CSDN通过智能技术生成

计算方程组的一般方法分为直接求解法和迭代计算法,直接求解法会占用计算机的过多资源,增加了程序的复杂程度。而使用迭代的方法会简便程序的设计复杂度,更加适合大规模矩阵的计算要求。 


目录

一. 线性方程组迭代基本

二. 定常迭代法

2.1 jscob迭代法

2.2 Gauss—Seidel迭代法

2.3 松弛法

2.3.1 Richardson

2.3.2 Jacobi松弛



一. 线性方程组迭代基本

 对于一般的矩阵形式\large Ax=b\large A\in \mathbb{R}^{n\times n}的非奇异矩阵。将该式变化为\large x=Hx+f的等价形式。将该式构造为可迭代的形式\large x^{k+1}=Hx^{k}+f

迭代矩阵的可行性:

上式的迭代公式中的\large H矩阵是作为收敛矩阵,当收敛矩阵的谱半径小于1时,认为矩阵是收敛的,形式为\large \rho \left ( H \right )<1

向量\large \mathbf{x}收敛情况为,向量中的各个元素\large x^{\left (i \right )}是收敛的,即:\large \lim_{x^{\left ( i+1 \right )}\rightarrow x^{\left ( i\right )}}\left ( x^{\left ( i+1 \right )}-x^{\left ( i\right )} \right )=0。 


二. 定常迭代法

利用迭代形式\large x^{k+1}=Hx^{k}+f进行求方程组\large x=Hx+f的近似解的简单迭代解。定义矩阵\large A的形式,

\large A=\left (a _{ij} \right )_{n\times n},而\large D=diag(a_{11},...,a_{nn})为对角矩阵,\large -L,-U为矩阵的上下三角矩阵。

2.1 jscob迭代法

迭代计算的初始化的值任选\large x_{i}^{(0)}(i=1,2,3,... ,n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值