- 博客(7)
- 收藏
- 关注
原创 A universal description of stochastic oscillators(随机振子的普适描述)(3)
本文提出了一种描述随机振荡器的普适方法,通过将随机振荡器映射为Kolmogorov后向算子的本征函数Q₁*(x)。该方法将不同机制产生的随机振荡(如噪声扰动极限环、可激发系统等)统一处理,其关键特征包括:复值本征函数Q₁*(x)的功率谱呈现Lorentz型分布,对外部弱扰动的响应可用单极点滤波器描述,而耦合振荡器的互谱可表示为非耦合系统功率谱与敏感度的组合。该框架基于随机系统的概率密度演化,利用Kolmogorov方程的本征谱分析,使得性质迥异的随机振荡器具有可比性,并为弱耦合振荡器系统提供了统一描述工具。
2025-09-28 22:33:26
663
原创 A universal description of stochastic oscillators(随机振子的普适描述)(2)
物理、化学和生物学中的许多系统都会表现出带有显著随机成分的振荡。这类随机振荡可能通过不同的机制产生,例如:稳定焦点附近的线性动力学在噪声作用下的波动、受到噪声扰动的极限环系统、或者在可激发系统中随机输入导致的脉冲列。尽管它们的起源多种多样,但这些随机振荡在现象学上往往表现出惊人的相似性。在本文中,我们引入了一种对随机振荡器的非线性变换,将其映射为一个复值函数Q1∗xQ1∗x。
2025-09-28 22:33:06
828
原创 A universal description of stochastic oscillators(随机振子的普适描述)(1)
Lindner是从物理 / 随机系统起步,逐渐把随机 / 噪声方法引入神经 /复杂系统,是本论文关于“随机振荡 +本征函数 / 噪声响应”方向的核心力量。Thomas是在数学 /生物 /神经建模交叉领域有深厚积累,他能把严密的算子、本征理论、随机过程工具融入生物 / 神经系统建模中。则更偏重在振荡器 / 相-振幅 / 参数化方法论层面的创新,是将这些方法扩展到随机振荡领域的重要桥梁。Gutkin。
2025-09-28 22:30:52
659
原创 临界转换机制:从理论到实践
临界转换可分为CSD(临界减速)和非CSD两类。CSD表现为临界前恢复变慢,但其可观测性受噪声和驱动条件限制;非CSD突变则可能由噪声、速率或混沌动力学引发。数学机制上,临界转换分为分岔诱导(B-tipping)、噪声诱导(N-tipping)和速率诱导(R-tipping)。复杂网络中的临界转换涉及结构、动力学和流的耦合。数据研究中,传统统计方法在强噪声下受限,而深度学习方法在跨机制识别和预测方面展现出优势。机器学习与传统方法的互补性成为研究热点,需根据不同机制和数据条件选择适配策略。
2025-08-19 16:52:58
880
原创 通过景观通量方法统一确定性和随机生态动力学(如何理解和量化生态系统(特别是森林和稀树草原生态系统)在随机波动影响下的动力学和稳定性)
频率分布可以表征与生态状态稳定性相关的人口潜力景观。我们通过分析森林-稀树草原模型来说明这种方法的实际效用。稀树草原和森林状态在某些条件下共存,这与过去的理论工作和经验观察相一致。然而,在相应的确定性模型中看不到的草原状态,在波动下作为一种替代的准稳定状态出现,为一些实证分析中广泛草原的出现提供了理论基础。生态动态是由种群-潜在景观梯度和稳态概率通量共同决定的。通量量化了生态系统的净投入/产出,因此也量化了非平衡程度。景观和通量共同决定了以主导路径和转换速率为特征的稳定状态之间的转换。内在势能景观允许李
2023-11-19 19:41:36
2638
原创 分数阶离散系统Matlab画图
分数阶离散动力系统是一种描述时间和状态之间离散关系的数学模型,其中系统的演化具有分数阶差分方程的形式。与传统的整数阶离散动力系统相比,分数阶离散动力系统引入了分数阶差分算子,使得系统能够更好地描述非局部和长记忆的动力学行为。xn1Fxn)]其中,xn是系统在时间步骤n的状态,F是一个分数阶差分算子,它对应于非整数阶的差分操作。通常,分数阶差分算子可以通过分数阶微分或分数阶积分的方式来定义。:分数阶离散动力系统能够更好地捕捉系统状态与其过去状态之间的长期依赖关系。
2023-09-25 10:17:48
1688
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅