通过景观通量方法统一确定性和随机生态动力学(如何理解和量化生态系统(特别是森林和稀树草原生态系统)在随机波动影响下的动力学和稳定性)

频率分布可以表征与生态状态稳定性相关的人口潜力景观。

我们通过分析森林-稀树草原模型来说明这种方法的实际效用。稀树草原和森林状态在某些条件下共存,这与过去的理论工作和经验观察相一致。然而,在相应的确定性模型中看不到的草原状态,在波动下作为一种替代的准稳定状态出现,为一些实证分析中广泛草原的出现提供了理论基础。生态动态是由种群-潜在景观梯度和稳态概率通量共同决定的。通量量化了生态系统的净投入/产出,因此也量化了非平衡程度。景观和通量共同决定了以主导路径和转换速率为特征的稳定状态之间的转换。内在势能景观允许李雅普诺夫函数,它提供了全球稳定性的定量度量。我们发现在有限波动和零波动下,平均通量、熵产率和自由能在分岔附近都有显著的变化。这些可以提供分岔的动力学和热力学起源。我们确定了观察到的频率、时间轨迹、波动和时间不可逆性的差异作为分岔的运动学度量。

这一框架开辟了描述全球生态系统的方式,揭示了它们如何在状态之间变化,并量化了随机波动下准稳定状态的出现。

作者在这项研究中分析了一个特定的生态模型,即森林与稀树草原共存的模型。这个模型原本是一个常微分方程(ODE)模型,它在没有随机波动(即确定性情况)下描述了森林和稀树草原状态的动态。然后,作者引入了随机噪声或随机波动,以考虑现实世界中生态系统所面临的不确定性因素。这种考虑随机波动的方法使得模型能够更加真实地反映自然环境中的生态动态。在这个扩展的模型中,作者使用了两个关键概念来分析和理解生态系统的行为:
种群-潜在景观梯度:描述生态状态概率分布的工具,可以帮助理解在不同条件下哪些生态状态更可能出现。它基于生态系统状态的稳态概率分布来构建,为理解和预测生态系统的稳定性提供了一个框架。
稳态概率通量:描述了生态系统中的净投入/产出,反映了系统的非平衡程度。它有助于理解生态系统如何在不同稳定状态之间转换,以及这些转换的动力学特性。
通过结合这两个概念,研究人员能够更全面地分析生态系统的动态,包括稳定状态之间的转换、全局稳定性的量化,以及在随机波动影响下可能出现的分岔现象。这种方法为理解和预测复杂生态系统的行为提供了一个强大的工具。

通过构建微分方程集和探索其长期行为来表征系统动力学已成为应用科学中的标准和强大工具(1)。从沃尔泰拉的早期作品到近年来,数学生物学和生态学中尤其如此(2)。非线性动力系统的框架使我们能够有效地表征稳态,周期轨道,甚至更复杂的不变集,以及它们对系统参数的依赖(3-8)。然而,这些方法通常依赖于吸引子附近系统的局部特性,而不是设计来解决在噪声存在下动力学如何改变或波动如何诱导多个稳定吸引子之间的全局切换。在许多生态模型中,可以出现多个可选择的稳定状态,每个状态都有自己独特的吸引力盆地。因此,描述这些状态的稳定性及其对生态波动的响应并预测它们之间可能的转变是生态学中的一个重大挑战(3,7,9)。实际上,在更长的时间尺度上,可能由波动引发的缓慢变量进化可以改变动力学的拓扑结构,导致关键转变或在状态或吸引力盆地之间摇摆不定(1,5,6,10 - 12)。我们介绍了来自非平衡统计力学的景观通量理论如何为研究这些问题提供一个强大的框架,使用一个众所周知的稀树草原-森林模型,通常被称为Staver-Levin (SL)模型作为案例研究(5,6)。在这里,稀树草原指的是草为主的状态,有一些树木和幼树,而森林指的是树为主的状态,很少有草和幼树。

生态系统受到各种随机噪声源的影响,从火灾和气候变化到物种生长和死亡率的变化(见参考资料5、6、8、13和14及其参考文献)。在生态动力学中,感兴趣的可观测值波动,这可能给本来确定的过程引入不可预测性。在这种情况下,可以收集植被或其分布的统计数据,并经常提供对生态系统状态的可靠量化。统计模式通常是相对规则的,相关的概率动力学可以预测,因为它们通常遵循相关的福克-普朗克或主方程所规定的线性演化规律。尽管随机轨迹的概率演化方程和相应的Langevin方程在统计学上通常在数学上是等价的,但由于非线性相互作用和波动,个体轨迹往往无法可靠地预测(1,15,16)。这些轨迹可以与观测结果进行比较不仅是时间轨迹,而且还有它们的频率或统计分布,这些都越来越容易获得(17)。一个关键的问题是观察到的频率分布是如何与稳定性联系起来的(18)。快照数据的生态学分析大多假设稳定状态比不稳定状态出现的频率更高(19)。然而,实际情况可能更加复杂,并且解开潜在的稳定构型和随机效应仍然是一个挑战。

在生态系统动力学的背景下,"可观测值的波动"指的是生态系统中某些关键变量或参数随时间的变化和不确定性。这些波动可能源于多种因素,包括环境变化、生物学过程的内在随机性,以及人为干预等。在生态学的研究中,这些波动对于理解和预测生态系统的行为至关重要。这句话的核心在于,尽管从数学上看,概率演化方程和Langevin方程可以被视为等价(因为它们都描述了系统的随机行为),但在实际应用中,由于系统的非线性相互作用和随机波动的影响,预测单个实体(如一个特定物种的种群数量)的具体轨迹变得非常困难。
非线性相互作用意味着系统的行为不是简单的线性关系,小的变化可以导致大的效果,或者系统的响应可能随条件的不同而变化。加上随机波动(如环境变化、随机事件等),这使得即使我们有一个数学上精确的模型,个体轨迹(即单个实体的具体行为)的预测也会因为这些复杂性和不确定性而变得不可靠。
概率演化方程和Langevin方程,以及它们在描述复杂系统(如生态系统)中的应用:
概率演化方程:一种描述系统状态随时间演化的概率分布的方程。在生态系统的背景下,这可能涉及种群数量、资源分布等的概率分布。这类方程通常用于描述系统的整体行为,而不是单个实体的具体行为。例如福克-普朗克方程(连续)、主方程(离散)。
Langevin方程:这是一种随机微分方程,用于描述系统中单个实体或变量的时间演化。它包含了确定性的动力学部分和表示随机性的噪声项。在生态系统中,这可能是描述单个物种种群数量随时间变化的方程。

也就是说,在应用科学中,特别是在数学生物学和生态学中,构建微分方程组并探索其长期行为是一种标准且强大的方法来表征系统的动力学。这些方法通常依赖于非线性动力系统理论,能够有效地描述系统的稳态、周期轨道、混沌吸引子等局部行为,以及这些行为对系统参数的依赖性。
然而,这些传统方法在处理随机噪声下的全局动力学变化时存在局限性,尤其是在生态系统中,多个稳定状态的存在使得描述这些状态的稳定性及其对生态波动的响应成为一个挑战。这是因为随机波动可以深刻地改变系统的动力学结构,导致关键转变或状态之间的不确定摇摆,使得预测系统何时以及如何从一个状态转换到另一个状态变得复杂。
作者提出的非平衡统计力学中的景观通量理论框架为研究这些复杂问题提供了新的视角。通过考虑系统的全局特性和随机波动的影响,这种方法能够更全面地理解和预测生态系统在多个稳定状态之间的动态转换。这种方法的应用,如在森林与稀树草原共存的模型中所展示的,揭示了生态系统在随机波动下的准稳定状态和全球稳定性的新见解。

历史上,研究人员已经应用了无数的技术来研究受随机强迫影响的复杂系统的全局动力学。一些方法侧重于零噪声极限(20-23),而另一些方法则考虑了有限随机波动(1,24 - 26),但某些数学挑战仍然存在(25,26)。最近在癌症免疫相互作用的微环境“生态系统”中探索了数据驱动的景观变化和过渡路径方法(27-30)。

在这项研究中,我们重点介绍了最近开发的一种方法,用于在统一框架中分析确定性和随机复杂系统的全局稳定性和动力学(4,17,31,32)。对于一般动力系统,可以通过识别所谓的种群势景观和旋转旋度通量来研究全局动力学全球人口潜力景观由生态状态的稳态概率分布决定,旋转旋度通量由稳态概率通量决定。启发式地,**人口潜力景观将系统吸引到稳定状态的盆地,旋度通量以旋转方式驱动系统,从而增强了流量的稳定性。此外,由于人口潜力景观与稳态的统计分布直接相关,我们可以使用观测到的频率分布来推断潜在的人口潜力景观。观测到的频率分布通常是单变量的,允许在这个特定的维度上对生态系统进行有效的描述(8)。从观测到的单变量频率分布推断出的相应景观可以提供有关系统全局稳定性的见解。**如果观察到不同的单变量频率分布,可以将多变量种群景观近似为弱耦合假设下单个单变量分布的乘积(平均场近似)。为了获得关于人口格局的更精确的信息,人们需要知道联合分布的所有可观测值的时间序列,这在实践中很少发生。

种群势景观(Population Potential Landscape):这个概念是从统计物理学中借鉴来的,用于描述生态系统中不同状态的稳定性。在这里,它指的是一个由生态状态的稳态概率分布决定的“景观”。这个景观可以想象成一个地形图,其中每个点代表生态系统的一个可能状态,而该点的高度(或深度)表示该状态的稳定性或潜在能量。在这个景观中,低谷(或深坑)代表稳定状态,因为它们是潜在能量最低的点,系统更倾向于处于这些状态。想象一下一个有山丘和山谷的地形图。在这个比喻中,每个山谷代表生态系统中的一个稳定状态(比如森林或草原)。山谷越深,表示这个状态越稳定,系统就越倾向于保持在这个状态。这个“地形图”就是所谓的种群势景观,它帮助我们理解不同生态状态的稳定性。
旋转旋度通量(Curl Flux):这是描述系统中概率流动的一个量。在生态系统的上下文中,它描述的是生态状态之间的转换概率。旋度通量不仅仅是一个简单的流动,它具有“旋转”的特性,意味着它可以在不同的稳定状态之间产生循环或旋转的动态。这种旋转特性有助于增强系统中流量的稳定性,因为它促使系统在不同稳定状态之间进行动态平衡。现在想象在这个地形图上有水流。这些水流不仅在山谷之间流动,还可能形成漩涡。这些水流和漩涡代表生态系统状态之间的转换。例如,水流可能从一个山谷(一个稳定状态)流向另一个山谷(另一个稳定状态)。这种流动和漩涡就是旋转旋度通量,它帮助我们理解生态系统状态是如何从一个转换到另一个的。

种群势景观:首先,我们构建种群势景观,它基于系统的稳态概率分布。这个景观描绘了系统在没有随机扰动时的稳定状态和它们之间的关系。在这个景观中,稳态通常对应于“山谷”,而不稳定状态对应于“山峰”或“山脊”。
引入随机扰动:当我们在系统中引入随机扰动(例如高斯白噪声)时,系统的动态就不再仅仅被确定性的ODE控制,而是还受到这些随机因素的影响。
旋转旋度通量:在这种随机扰动的影响下,系统的状态可能会从一个稳态“山谷”跳跃到另一个“山谷”。旋转旋度通量描述的就是这种状态转换的概率或频率。它不仅告诉我们转换可能发生的路径,还告诉我们这些路径的相对可能性。
动态分析:通过分析旋转旋度通量,我们可以更深入地理解系统在随机扰动下的动态行为,特别是不同稳态之间的转换概率和机制。

下面给出一个ODE中的景观势能的例子:

  1. 定义动力学方程 首先,你需要有一个描述系统动力学的方程。例如,考虑一个简单的一维动力学系统,其方程可以表示为: d x d t = f ( x ) \frac{d x}{d t}=f(x) dtdx=f(x) 其中 x x x 是系统的状态变量, f ( x ) f(x) f(x) 是描述系统如何随时间变化的函数。

  2. 确定平衡点 接下来,找出系统的平衡点,即那些使得 d x d t = 0 \frac{d x}{d t}=0 dtdx=0 的点。这些点可以是稳定的 (吸引子) 或不稳定的 (排斥子)。

  3. 分析稳定性 对于每个平衡点,分析其稳定性。这通常涉及到计算雅可比矩阵并分析其特征值。对于一维系统,这相对简单: 如果在平衡点附近,导数 f ′ ( x ) < 0 f^{\prime}(x)<0 f(x)<0 ,则该点是稳定的;如果 f ′ ( x ) > 0 f^{\prime}(x)>0 f(x)>0 ,则该点是不稳定的。

  4. 构建势能函数 在一维系统中,可以通过积分动力学方程来构建一个势能函数 V ( x ) V(x) V(x) : V ( x ) = − ∫ f ( x ) d x V(x)=-\int f(x) d x V(x)=f(x)dx 这个势能函数可以帮助你可视化系统的动态。在势能图中,低点 (山谷) 对应于稳定平衡点,而高点 (山峰) 对应于不稳定平衡点。

  5. 数值模拟和可视化 使用数值方法 (如欧拉法或龙格-库塔法) 模拟系统的动态,并将结果可视化。你可以绘制势能函数和系统状态随时间的变化。

  6. 考虑随机扰动 如果你想考虑随机扰动,可以将随机项添加到动力学方程中,例如: d x d t = f ( x ) + η ( t ) \frac{d x}{d t}=f(x)+\eta(t) dtdx=f(x)+η(t) 其中 η ( t ) \eta(t) η(t)
    是一个表示随机扰动的项,例如高斯白噪声。然后,使用随机微分方程的数值方法来模拟这个系统。

  7. 分析概率分布 最后,分析在随机扰动下系统状态的概率分布。这可以通过长时间的模拟来实现,记录系统状态的频率分布,并将其可视化。

自Volterra的基础工作(2)以来,大量的研究集中在试图寻找动态生态模型的Lyapunov函数(33),但这种方法存在实际困难,并且仍然有些不完整(4,17,31)。景观通量框架提供了一种分析生态系统动态的通用方法。我们将重点关注其在森林-稀树草原模型中的含义,以研究随机动力学和草、树苗和树木之间的相互作用(5,6)。这将使我们不仅能够量化潜在的人口潜力景观,将其与长期可观测值的频率分布联系起来,并深入了解各种条件下的全球稳定性,而且还表征波动对动力学的影响。

本研究建立了长时间观测频率分布与生态系统种群景观之间的联系。此外,我们将确定多个状态之间的转换速率及其对噪声水平的依赖。特别是,与波动破坏稳定状态的观点相反,我们将在这里表明,波动有时可以产生确定性动力学中不存在的状态。重要的是,我们表明,表征生态系统净输入/输出的非零通量,以及非平衡程度(距离平衡的距离),以及人口潜力景观,决定了吸引力盆地之间由噪声引起的过渡,包括主导路径和过渡速率。这些由噪声引起的转变是不可逆的,因为从A到B的主要正向路径与从B到A的主要反向路径不同。

因此,该框架开辟了描述全球生态系统的方式,揭示了它们如何由于非零通量而在状态之间切换,并量化了确定性动力学中不存在的稳定状态的出现。

为了研究受噪声影响的SL模型,我们首先计算了有限波动下的非平衡种群-潜在景观(U)。然后取零波动极限,得到内势景观,记为φ0。正如我们目前所展示的,内在潜在景观是生态动力学的全局Lyapunov函数,因此内在潜在景观的拓扑结构为生态系统的全局稳定性提供了定量度量。此外,我们还描述了生态动力学的内在势梯度驱动力与概率通量驱动力之间的定量关系。我们还确定了非平衡自由能*(考虑了系统离开平衡状态的程度,以及由此产生的热力学成本。这种成本通常与系统为维持其非平衡状态而耗散的能量有关。在生态系统的背景下,非平衡自由能可以帮助理解和量化系统在受到外部扰动(如环境变化、物种相互作用等)时的稳定性和动态行为。例如,它可以用来量化生态系统在面对随机波动(如气候变化、物种波动等)时的响应能力和稳定性。通过计算非平衡自由能,研究人员可以更好地理解和预测生态系统在变化环境中的行为,包括可能的状态转换和新稳定状态的出现。)*作为一个李雅普诺夫函数来量化生态系统在有限波动下的全局稳定性。非平衡态内禀自由能与生态系统的不同相和分岔(相变)之间的联系随着参数的变化而变化。复杂的生态系统通常涉及非线性相互作用,可以导致各种行为和各种动态制度之间的转换。系统定性行为的这些变化可以通过分岔来描述,其中不同的稳定/不稳定状态可以分支出来,满足或自发出现(1,34,35)。能量、物质或信息交换也可能导致新的阶段和分歧。

在非平衡系统中,通量提供了熵产的起源,熵产是非平衡热力学成本的度量。这种成本是对某些生物功能所需的自由能量消耗或耗散的热力学度量;它是由熵产生来量化的。例如,为了维持细胞周期流动,需要通过三磷酸腺苷水解磷酸化反应来提供营养,通过熵产或自由能成本来量化。在平衡生态系统中,分岔完全由势梯度决定。而在非平衡生态系统中,分岔是由势梯度和旋转通量共同决定的。

因此,旋度通量在非平衡系统的非平衡状态和分岔的出现中起着至关重要的作用(4,36,37)。

我们分析了有限波动和零波动下的平均旋度通量(Fluxav)和熵产率(EPR)。

随着系统参数的变化,Fluxav和与EPR相关的热力学成本在两个鞍节点分岔附近(之间)都有显著变化,特别是在零波动情况下。因此,非平衡生态系统分岔的动力和热力学根源可能分别来自旋度通量和EPR。另一方面,这些物理量可以从观测到的时间序列中推断出来。例如,通量和EPR的信息可以直接从观测到的时间轨迹的时间不可逆性中推断出来。从观测到的时间轨迹中直接得到的频率统计量和动力学时间的方差可以作为分岔开始或偏移的运动学标记。基于观察到的时间轨迹的物理和运动学标记可以用来识别生态动力学中分岔的开始或结束。

这段摘要描述了如何使用旋度通量(Fluxav)和熵产率(EPR)来分析和理解非平衡生态系统中的分岔现象。这些概念是理解复杂生态系统动力学的关键.

随着系统参数的变化,旋度通量和熵产率在两个鞍节点分岔附近都有显著变化,尤其是在零波动的情况下。这表明非平衡生态系统的分岔可能既有动力学也有热力学的根源。动力学根源可能与旋度通量有关,而热力学根源可能与熵产率有关。
此外,这些物理量可以从观测到的时间序列中推断出来。例如,通过分析时间序列的时间不可逆性,可以推断出通量和熵产率的信息。观测到的时间轨迹的频率统计量和动力学时间的方差可以作为识别生态动力学中分岔开始或结束的运动学标记。
总的来说,这种方法提供了一种通过观测数据来理解和预测生态系统中复杂动力学行为的方式,特别是在系统经历关键转变时。通过分析旋度通量和熵产率,研究人员可以更好地理解生态系统如何响应环境变化和内部动力学的变化,并预测可能出现的新稳定状态。
旋度通量 (Fluxav)
旋度通量是一个度量,用来描述在生态系统中物质或能量的流动。在一个非平衡生态系统中,这种流动可能是由于物种间的相互作用、能量的转移或物质的循环。例如,考虑一个森林生态系统,旋度通量可以表示树木和其他植物之间的能量转移,或者是动物和植物之间的物质循环。
当系统的参数发生变化时(比如气候变化、物种的引入或灭绝),旋度通量也会发生变化。这些变化可以揭示系统状态的转换,比如从一个稳定状态转移到另一个稳定状态。

熵产率 (EPR)
熵产率是非平衡热力学的一个概念,它描述了系统远离热力学平衡状态时熵的变化速率。在生态系统中,熵产率可以反映系统的能量耗散和无序程度。高熵产率通常意味着系统更远离平衡状态,可能表明系统正在经历重要的动态变化。
例如,如果一个生态系统由于外部干扰(如火灾、疾病爆发)而远离其正常的平衡状态,熵产率会增加,表明系统的能量和物质正在以更快的速度耗散。

分岔和系统变化
在非平衡生态系统中,分岔是系统从一个稳定状态转换到另一个稳定状态的过程。这个摘要指出,旋度通量和熵产率在系统经历分岔时会发生显著变化,尤其是在没有随机波动(零波动)的情况下。
这意味着,通过观察旋度通量和熵产率的变化,我们可以预测或识别生态系统中的分岔点。分岔点是系统动态行为发生重大变化的关键时刻,可能导致新的稳定状态的出现。
从观测数据中的推断
这些物理量(旋度通量和熵产率)可以从观测到的时间序列数据中推断出来。通过分析生态系统中的时间序列数据(如植被覆盖率、物种数量的变化等),可以推断出系统的旋度通量和熵产率。这些分析可以帮助科学家理解和预测生态系统如何响应环境变化和内部动力学的变化。

主要内容和结果

The Staver-Levin Model. The SL model was introduced to study the dynamics of the ecological system and the interplay between the fractions of terrain covered by grass ( G ) (G) (G), savanna saplings ( S ) (S) (S), and savanna trees ( T ) (T) (T) in a forest-savanna ecological system ( 5 , 6 ) (5,6) (5,6). In the absence of forest trees, the interaction between savannas and grass is mediated by fires, carried by grass, that limit the rate of maturation of savanna saplings into adult trees. More precisely, the simplified interactions between grass and two life stages of savanna trees are given by the equations ( 5 , 6 ) (5,6) (5,6)
G ˙ = μ S + ν T − β G T S ˙ = β G T − ( ω ( G ) + μ ) S T ˙ = ω ( G ) S − ν T . \begin{aligned} & \dot{G}=\mu S+\nu T-\beta G T \\ & \dot{S}=\beta G T-(\omega(G)+\mu) S \\ & \dot{T}=\omega(G) S-\nu T . \end{aligned} G˙=μS+νTβGTS˙=βGT(ω(G)+μ)ST˙=ω(G)SνT.

Parameter interpretations and their default values (unless otherwise specified) are given in Table 1. The function ω ( G ) = ω 0 + ω 1 − ω 0 1 + e − ( G − θ 1 ) / s s 1 \omega(G)=\omega_0+\frac{\omega_1-\omega_0}{1+e^{-\left(G-\theta_1\right) / s s_1}} ω(G)=ω0+1+e(Gθ1)/ss1ω1ω0 is a smooth decreasing sigmoid with parameters chosen to qualitatively capture how threshold fire onset limits the maturation of saplings into adult trees. This aspect of the model can be motivated by percolation theory as well as empirical observations ( 6 , 38 ) (6,38) (6,38). By scanning the parameter ranges, we find only monostable or bistable behaviors (see SI Appendix for detailed exploration of the parameter space). Therefore, we focus on certain ranges of parameters, which cover all of the dynamic regimes of the model.

The SL model assumes that all terrain is covered by one of grass, saplings, or savanna trees, so that G + S + T = 1 G+S+T=1 G+S+T=1 for all times. Hence, we can reduce the system to a two-dimensional system in which we keep track only of grass ( G ) (G) (G) and savanna trees ( T ) (T) (T) since saplings ( S ) (S) (S) will be given by S = 1 − T − G S=1-T-G S=1TG.

这段文字介绍了Staver-Levin (SL) 模型,这是一个用于研究森林-稀树草原生态系统动态的数学模型。该模型特别关注草地 ( G ) (G) (G) 、稀树草原幼树 ( S ) (S) (S) 和稀树草原成树 ( T T T ) 在该生态系统中所占土地的比例。模型的核心是一组微分方程,描述了这三种植被类型之间的相互作用。

SL模型的微分方程如下:
G ˙ = μ S + ν T − β G T S ˙ = β G T − ( ω ( G ) + μ ) S T ˙ = ω ( G ) S − ν T . \begin{aligned} & \dot{G}=\mu S+\nu T-\beta G T \\ & \dot{S}=\beta G T-(\omega(G)+\mu) S \\ & \dot{T}=\omega(G) S-\nu T . \end{aligned} G˙=μS+νTβGTS˙=βGT(ω(G)+μ)ST˙=ω(G)SνT.
这里, G ˙ , S ˙ \dot{G}, \dot{S} G˙,S˙, 和 T ˙ \dot{T} T˙ 分别表示草地、幼树和成树覆盖率随时间的变化率。

  • μ , ν \mu, \nu μ,ν, 和 β \beta β 是模型中的参数,它们代表不同生态过程的速率。
  • ω ( G ) \omega(G) ω(G) 是一个关于草地覆盖率 G G G 的函数,表示火灾如何影响幼树成长为成树的速率。这个函数是一个平滑递减的sigmoid函数,其形状和参数选择是为了定性地捕捉火灾发生阈值如何限制幼树成熟的过程。

平滑递减的sigmoid函数(可以理解为激活函数):平滑递减的sigmoid函数是一种特殊的数学函数,它的图形类似于“ S S S ”形,但随着输入值的增加而递减。这种函数通常用于模拟具有阈值效应的过程,其中某些变化在达到特定点之前缓慢发生,然后迅速发生,最后再次变缓。
在Staver-Levin模型中, ω ( G ) \omega(G) ω(G) 函数就是一个平滑递减的sigmoid函数。它的形式是:
ω ( G ) = ω 0 + ω 1 − ω 0 1 + e − G − θ 1 s 1 \omega(G)=\omega_0+\frac{\omega_1-\omega_0}{1+e^{-\frac{G-\theta_1}{s_1}}} ω(G)=ω0+1+es1Gθ1ω1ω0
这里的参数 ω 0 \omega_0 ω0 ω 1 \omega_1 ω1 分别代表函数的最大值和最小值, θ 1 \theta_1 θ1 是sigmoid曲线的中点,而 s 1 s_1 s1 控制曲线的陡峭程度。当 G G G (草地覆盖率) 增加时, ω ( G ) \omega(G) ω(G) 函数值会从 ω 0 \omega_0 ω0 递减到 ω 1 \omega_1 ω1 ,反映了草地覆盖率增加如何减缓幼树向成树转化的速率。这种函数形式能够捕捉到生态系统中的非线性反应和阈值效应。

模型假设所有地形完全被草地、幼树或成树覆盖,因此 G + S + T = 1 G+S+T=1 G+S+T=1 。这意味着系统可以简化为一个二维系统,只需要跟踪草地 ( G ) \mathrm{G}) G) 和成树 ( T ) \mathrm{T}) T) ,因为幼树 (S) 的比例可以通过 S = 1 − S=1- S=1 T − G T-G TG 计算得出。

通过参数扫描,研究者发现该模型只表现出单稳态或双稳态行为。因此,研究主要集中在覆盖模型所有动态区域的特定参数范围内。

段落总结:Staver-Levin模型描述了一个生态系统,其中包括草地(G)、稀树草原幼树(S)和稀树草原成树(T)。这个模型原本是三维的,因为它涉及三个不同类型的植被。然而,由于这三种植被的覆盖总和始终为1(即 G+S+T=1),因此可以将系统简化为二维系统。在这种情况下,只需要跟踪其中两种植被的覆盖率,因为第三种植被的覆盖率可以通过这个等式计算得出。

在研究这个模型时,重点是探讨在特定参数范围内的全局动力学。这意味着要分析系统在不同条件下的行为,特别是在考虑到生态系统可能表现出的不同稳定状态(如单稳态或双稳态)时。通过改变模型中的参数,可以研究这些状态如何随着环境条件的变化而变化,以及这些变化如何影响整个生态系统的动态平衡。

Population-Potential Landscape and Flux Quantification for the SL Model. Due to fluctuations from internal and external sources, the deterministic dynamics described by a set of ordinary differential equations need to be modified to include the contribution of the additional fluctuation forces. Thus, the following stochastic dynamics emerge ( 4 , 10 , 37 , 39 , 40 ) : d x = F ( x ) d t + (4,10,37,39,40): d \mathbf{x}=\mathbf{F}(\mathbf{x}) d t+ (4,10,37,39,40):dx=F(x)dt+ g ⋅ d W \mathbf{g} \cdot d \mathbf{W} gdW, where x \mathbf{x} x is the vector representing the observables for the population or species density; and x = { G , T } \mathbf{x}=\{G, T\} x={G,T} for the SL model. In our case, x \mathbf{x} x does not represent spatial variables as we model spatial extent only implicitly by tracking the proportions of space covered by each vegetation type. We retain this notation for both the stochastic dynamics and the corresponding Fokker-Planck equation. F ( x ) \mathbf{F}(\mathbf{x}) F(x) is the driving force for the dynamics, and W \mathbf{W} W coupled with the matrix g \mathbf{g} g represents an independent Gaussian fluctuating process. We set D G = ( 1 / 2 ) ( g ⋅ g ⊤ ) D \mathbf{G}=(1 / 2)\left(\mathbf{g} \cdot \mathbf{g}^{\top}\right) DG=(1/2)(gg), where D D D is a constant describing the scale of the fluctuations and G \mathbf{G} G represents the diffusion matrix of the fluctuations. In this study, G \mathbf{G} G is an isotropic diagonal identity matrix, for simplicity, and thus the noise is chosen as Gaussian white noise.

The stochastic dynamics are characterized by the probability distribution of the system state at time t , P ( x , t ) t, P(\mathbf{x}, t) t,P(x,t), which can be obtained by solving the Fokker-Planck equation:
∂ t P = − ∇ ⋅ J = − ∇ ⋅ [ F P − ( 1 / 2 ) ∇ ⋅ ( ( g ⋅ g ⊤ ) P ) ] . \partial_t P=-\nabla \cdot \mathbf{J}=-\nabla \cdot\left[\mathbf{F} P-(1 / 2) \nabla \cdot\left(\left(\mathbf{g} \cdot \mathbf{g}^{\boldsymbol{\top}}\right) P\right)\right] . tP=J=[FP(1/2)((gg)P)].

Hence, the steady-state probability distribution, denoted by P s s P_{s s} Pss, can be obtained by solving the steady-state Fokker-Planck equation; i.e., ∂ t P = 0 \partial_t P=0 tP=0. The normalization condition G + S + T = 1 G+S+T=1 G+S+T=1 in the SL model means that the system is reduced from three dimensions to two. Therefore, the state space is an isosceles right triangle with the two equal length sides having length 1 (see Fig. 2). In equilibrium systems, the probability follows a Boltzmann distribution P ∼ exp ⁡ [ − U ] ( 1 , 4 , 10 , 41 ) P \sim \exp [-U](1,4,10,41) Pexp[U](1,4,10,41) and the energy U U U is called the population-potential landscape. Thus, the driving force for the dynamics is determined by the gradient of the population-potential landscape in equilibrium systems.

Staver-Levin (SL) 模型的动力学被扩展为包含随机波动,从而形成了一个随机动力学系统。这是通过在普通微分方程 (ODE) 的基础上添加随机项来实现的。让我们逐步解析这个过程:

  1. 随机动力学方程: 系统的动态现在由随机微分方程 (SDE) 描述,形式为 d x = F ( x ) d t + g d W d \mathbf{x}=\mathbf{F}(\mathbf{x}) d t+\mathbf{g} d \mathbf{W} dx=F(x)dt+gdW 。这里, x \mathbf{x} x 是一个向量,代表种群或物种密度的可观测值,在SL模型中, x = { G , T } \mathbf{x}=\{G, T\} x={G,T} 。向量 F ( x ) \mathbf{F}(\mathbf{x}) F(x) 是系统动力学的驱动力,而 W \mathbf{W} W 与矩阵 g \mathbf{g} g 结合,代表一个独立的高斯波动过程。
  2. 扩散矩阵:扩散矩阵 G \mathbf{G} G 描述了波动的性质。在这项研究中,为了简化, G \mathbf{G} G 被设定为一个各向同性的对角单位矩阵,这意味着噪声被选择为高斯白噪声。
  3. Fokker-Planck:随机动力学的特征是系统状态在时间 t t t 的概率分布 P ( x , t ) P(\mathbf{x}, t) P(x,t) ,可以通过解Fokker-Planck方程获得。这个方程描述了概率分布随时间的变化,形式为 ∂ t P = − ∇ ⋅ J \partial_t P=-\nabla \cdot \mathbf{J} tP=J ,其中 J \mathbf{J} J 是概率流。
  4. 稳态概率分布: 通过解稳态Fokker-Planck方程 (即 ∂ t P = 0 \partial_t P=0 tP=0 ) 可以得到稳态概率分布 P s s P_{s s} Pss
  5. 种群势景观: 在平衡系统中,概率遵循玻尔兹曼分布 P ∼ exp ⁡ [ − U ] P \sim \exp [-U] Pexp[U] ,其中能量 U U U 被称为种群势景观。因此,在平衡系统中,动力学的驱动力由种群势景观的梯度决定。

这个框架允许研究者分析在随机波动影响下生态系统的全局稳定性和动态行为。通过计算和分析种群势景观,可以更深入地理解生态系统在不同条件下的行为,包括稳定状态之间的可能转换。

在随机动力学方程 d x = F ( x ) d t + g ⋅ d W d \mathbf{x}=\mathbf{F}(\mathbf{x}) d t+\mathbf{g} \cdot d \mathbf{W} dx=F(x)dt+gdW 中,扩散矩阵 G \mathbf{G} G 作为一个各向同性的对角单位矩阵,确保了噪声在所有方向上的均匀性。福克-普朗克方程用于描述这个随机系统状态在时间 t t t 的概率分布 P ( x , t ) P(\mathbf{x}, t) P(x,t) 。求解福克-普朗克方程的平衡点确实可以得到稳态概率分布。

关于种群势景观的概念,这里的关键在于理解平衡系统中概率分布与势能的关系。在平衡系统中,系统的状态遵循玻尔兹曼分布,这是统计物理中的一个基本概念。玻尔兹曼分布表明,系统在不同状态的概率与这些状态的能量成指数关系。具体来说,状态的概率 P P P 与其能量 U U U 的关系为 P ∼ P \sim P exp ⁡ [ − U ] \exp [-U] exp[U]

在这里,能量 U U U 被称为种群势景观。这个势景观提供了一个能量的地形图,其中低能量区域(低势能)对应于系统更可能出现的状态(即概率高的区域),而高能量区域(高势能)对应于系统不太可能出现的状态 (即概率低的区域)。因此,在平衡系统中,动力学的驱动力由种群势景观的梯度决定。这意味着系统的状态倾向于从高能量 (不稳定) 区域移向低能量(稳定)区域。

在随机动力学方程 d x = F ( x ) d t + g ⋅ d W d \mathbf{x}=\mathbf{F}(\mathbf{x}) d t+\mathbf{g} \cdot d \mathbf{W} dx=F(x)dt+gdW 中,扩散矩阵 G \mathbf{G} G 作为一个各向同性的对角单位矩阵,确保了噪声在所有方向上的均匀性。在求解福克-普朗克方程时,我们关注的是稳态概率分布 P s s P_{s s} Pss ,即当 ∂ t P = 0 \partial_t P=0 tP=0 时的概率分布。在平衡条件下,这个稳态概率分布遵循玻尔兹曼分布 P ∼ exp ⁡ [ − U ] P \sim \exp [-U] Pexp[U] ,其中 U U U 是所谓的种群势景观,代表了系统状态的“能量”。
在这个框架中,势能 U U U 的梯度(即能量变化的方向和速率)描述了系统在不同状态之间的过渡倾向。低势能区域 (如山谷) 对应于系统的稳定状态,而高势能区域(如山峰)对应于不稳定状态。系统倾向于从高势能区域移向低势能区域,这反映了系统向其稳定状态的自然演变。
因此,通过分析种群势景观,我们可以获得关于系统全局行为的重要信息,包括系统可能存在的稳定状态、不稳定状态,以及这些状态之间的可能转换路径。这种方法在理解和预测复杂生态系统的动态行为方面尤其有用。

In equilibrium systems, there is no net flux in or out of the system. Thus, the steady-state probability flux is zero at all points in the state space; this is the so-called detailed balance condition J s s = 0 J_{s s}=0 Jss=0. In nonequilibrium systems, the nonzero flux, J s s J_{s s} Jss, is divergence-free and breaks the detailed balance condition. This nonzero flux thus provides a quantitative measure of the degree to which the system is out of equilibrium. In nonequilibrium ecological systems, the driving force F F F can be decomposed into the gradient of the potential U U U, the curl steady-state probability flux, and the divergence of the diffusion coefficient as F = − D G ⋅ ∇ U + J s s / P s s + D ∇ ⋅ G \mathbf{F}=-D \mathbf{G} \cdot \nabla U+\mathbf{J}_{s s} / P_{s s}+D \nabla \cdot \mathbf{G} F=DGU+Jss/Pss+DG. The population potential landscape U U U and the steady-state probability flux J s s J_{s s} Jss together can address many global dynamical and thermal dynamical issues including stability, robustness, dynamics, and thermodynamics of ecological systems. We use the SL model under fluctuations to study the stochastic dynamics and the interplay among grass, saplings, and trees ( 5 , 6 ) (5,6) (5,6). We solve the Fokker-Planck partial differential equation given by Eq. 2 for the SL model with reflecting boundary conditions, i.e., n ⋅ J = 0 \mathbf{n} \cdot \mathbf{J}=0 nJ=0, where n \mathbf{n} n is a unit vector perpendicular to the boundary of the state space, to obtain the probability distribution of the system. We can thus quantify the population-potential landscape U U U and the flux J s s J_{s s} Jss, which together determine the driving forces for the dynamics of the ecological system.

Forest-savanna landscapes are nonequilibrium open ecological systems and hence exchange energy with their environments, which leads to dissipation. The entropy of a stochastic system can be defined as S entropy  = S_{\text {entropy }}= Sentropy = − ∫ P ln ⁡ P d x -\int P \ln P d \mathbf{x} PlnPdx and the change in the entropy in time can be divided into the entropy production rate and heat dissipation rate. The time evolution of the entropy of the system is thus given by S ˙ entropy  = S ˙ t − S ˙ e \dot{S}_{\text {entropy }}=\dot{S}_t-\dot{S}_e S˙entropy =S˙tS˙e, where the entropy production rate ( E P R = S ˙ t ) \left(E P R=\dot{S}_t\right) (EPR=S˙t) is given as S ˙ t = ∫ d x ( J ⋅ ( D G ) − 1 ⋅ J ) / P ( 31 \dot{S}_t=\int d \mathbf{x}\left(\mathbf{J} \cdot(D G)^{-1} \cdot J\right) / P(31 S˙t=dx(J(DG)1J)/P(31, 42-44). Thus, the EPR is explicitly linked to the flux J J J. Zero flux would give rise to zero-entropy production, which would correspond to an equilibrium system. However, in practice, nonzero fluxes are likely, corresponding to nonequilibrium systems. A higher flux gives rise to a higher EPR, corresponding to more deviations from equilibrium. This formalism provides a link between nonequilibrium driving force (flux) and nonequilibrium thermodynamic cost, i.e., the EPR.

One can prove that S ˙ t ≥ 0 \dot{S}_t \geq 0 S˙t0, which leads to the second law of nonequilibrium thermodynamics. S ˙ t \dot{S}_t S˙t has the physical meaning of the EPR contributed from both the system S ˙ \dot{S} S˙ and the environment S ˙ e \dot{S}_e S˙e as S ˙ t = S ˙ entropy  + S ˙ e \dot{S}_t=\dot{S}_{\text {entropy }}+\dot{S}_e S˙t=S˙entropy +S˙e. This can be understood as a formulation of the first law of nonequilibrium thermodynamics. The heat dissipation rate from the environment is given as S ˙ e = ∫ d x ( J ⋅ ( D G ) − 1 ⋅ ( F − D ∇ ⋅ G ) ) \dot{S}_{\mathrm{e}}=\int d \mathbf{x}\left(\mathbf{J} \cdot(D \mathbf{G})^{-1} \cdot(\mathbf{F}-D \nabla \cdot \mathbf{G})\right) S˙e=dx(J(DG)1(FDG)). The heat dissipation rate can be either positive or negative and can quantify the entropy flow rate from the environment to the nonequilibrium system. When the system is at the steady-state S ˙ entropy  = 0 \dot{S}_{\text {entropy }}=0 S˙entropy =0, the EPR and the heat dissipation rate are equal ( 31 , 42 − 44 ) (31,42-44) (31,4244). The EPR and the average flux Flux a a v = ∫ J d x a_{a v}=\int J d \mathbf{x} aav=Jdx thus provide global thermodynamic measures for the nonequilibrium systems ( 4 , 17 , 31 , 43 ) (4,17,31,43) (4,17,31,43). The mathematical notation and definitions outlined above are summarized in SI Appendix, Table S1.

  1. 种群势景观 (Population-Potential Landscape) U:
  • 在非平衡系统中,动力学的驱动力 F F F 通常不能简单地表示为某个势能的梯度。
  • 然而,可以通过公式 U = − ln ⁡ P s s U=-\ln P_{s s} U=lnPss 定义种群势景观,并将其与稳态概率分布 P s s P_{s s} Pss 联系起来。
  1. 稳态概率通量 ( J s s J_{s s} Jss):
  • 表示为 J s s = F P s s − D ∇ ⋅ ( G P s s ) J_{s s}=F P_{s s}-D \nabla \cdot\left(G P_{s s}\right) Jss=FPssD(GPss) , 满足无散度条件 ∇ ⋅ J s s = 0 \nabla \cdot J_{s s}=0 Jss=0
  • 在平衡系统中,没有净通量流入或流出系统,即 J s s = 0 J_{s s}=0 Jss=0 (详细平衡条件)。
  • 在非平衡系统中,非零通量 J s s J_{s s} Jss 是无散度的,打破了详细平衡条件,提供了系统失平衡程度的定量度量。
  1. 驱动力 F F F 的分解:
  • 在非平衡态生态系统中,驱动力 F F F 可以分解为势 U U U 的梯度、旋度稳态概率通量和扩散系数的散度,即 F = − D G ⋅ ∇ U + J s s / P s s + D ∇ ⋅ g F=-D G \cdot \nabla U+J_{s s} / P_{s s}+D \nabla \cdot g F=DGU+Jss/Pss+Dg
  1. 熵产率 (EPR):
  • 熵产率 S ˙ t \dot{S}_t S˙t 与通量 j j j 明确地联系在一起,表示为 S ˙ t = R ∫ d x ( J ⋅ ( D G ) − 1 ⋅ J ) / P \dot{S}_t=R \int d x\left(J \cdot(D G)^{-1} \cdot J\right) / P S˙t=Rdx(J(DG)1J)/P
  • 零通量会产生零熵,对应于平衡系统。非零通量对应于非平衡系统,通量越大,EPR越高,与平衡的偏差越大。
  1. 非平衡态热力学第二定律:
  • 可以证明 S ˙ t ≥ 0 \dot{S}_t \geq 0 S˙t0 ,符合非平衡态热力学第二定律。
  • 环境散热速率 S ˙ e \dot{S}_e S˙e 可以是正的或负的,量化从环境到非平衡系统的熵流率。
  1. 全局热力学度量:
  • E P R \mathrm{EPR} EPR 和平均通量 F l u x a v = R ∫ J d x \mathrm{Flux}_{a v}=R \int J d x Fluxav=RJdx 提供了非平衡系统的全局热力学度量。

在非平衡系统中,非零通量 J s s J_{s s} Jss 是无散度的,这意味着在系统的状态空间中,通量的散度(即通量的空间导数的向量和) 为零。这个无散度条件 ∇ ⋅ J s s = 0 \nabla \cdot J_{s s}=0 Jss=0 对于非平衡系统是非常重要的,因为它表明尽管系统中存在通量(即系统状态的变化),但这些通量在整个状态空间中是连续且闭合的,没有“源”或“汇”。

这与平衡系统中的情况不同。在平衡系统中,由于满足详细平衡条件,稳态概率通量 J s s J_{s s} Jss 在状态空间中所有点处均为零,即 J s s = 0 J_{s s}=0 Jss=0 。这意味着在平衡系统中,没有净通量流入或流出系统的任何部分。

在非平衡系统中,尽管 J s s J_{s s} Jss 不为零 (即存在通量),但无散度条件 ∇ ⋅ J s s = 0 \nabla \cdot J_{s s}=0 Jss=0 保证了这些通量在整个系统中是平衡的。这种平衡不是指没有通量,而是指通量在整个系统中是连续且闭合的,没有任何部分的通量累积或消失。这是非平衡系统动力学的一个关键特征,反映了系统中能量和物质流动的连续性和闭合性。

段落总结:在非平衡系统中,我们使用公式U=−lnP
ss定义种群势景观,这个公式是由稳态概率分布Pss得到的。但是在非平衡系统中,我们也使用这个公式。对于Jss的定义,事实上是已有研究的固定表达,例如福克-普朗克方程。在平衡系统中,由于所有的点都是不连续的,没有净通量流入或流出系统,即
J
ss=0(详细平衡条件)。在非平衡系统中,由于非零通量是连续的并且是连通的(注意这里的通量事实上是一种刻画系统动态变化的量),因此非零通量是无散度的。而对于驱动力F的分解事实上也是固定的,如果有必要我们可以去探索为什么这么表达。熵产率
(EPR)、环境散热速率和全局热力学度量则是定量的分析非平衡现象的一种工具。

  1. 种群势景观 U: 在非平衡系统中,种群势景观 U U U 通过公式 U = − ln ⁡ P s s U=-\ln P_{s s} U=lnPss 定义,其中 P s s P_{s s} Pss 是系统的稳态概率分布。这个概念帮助我们从概率的角度理解系统的动态行为,即使在非平衡条件下。
  2. 稳态概率通量 Jss: 在平衡系统中,由于详细平衡条件 ( J s s = 0 ) \left(J_{s s}=0\right) (Jss=0) ,系统中没有净通量流入或流出。而在非平衡系统中,存在非零的稳态概率通量 J s s J_{s s} Jss
    ,这反映了系统状态的连续变化。这些通量是无散度的,意味着它们在整个状态空间中形成闭合的循环,没有明显的“源”或“汇”。
  3. 驱动力 F \mathrm{F} F 的分解: 驱动力 F F F 的分解是根据系统的动力学和热力学特性进行的。它包括势能梯度、稳态概率通量和扩散系数的散度。这种分解有助于我们更好地理解和量化非平衡系统的行为。
  4. 熵产率 (EPR) 和环境散热速率: 这些是分析非平衡系统的重要工具。熵产率 E P R E P R EPR 衡量系统熵的增加速率,而环境散热速率则描述了系统与其环境之间的能量交换。这些量化指标有助于我们理解系统如何从环境中吸收或释放能量。
  5. 全局热力学度量: 这些度量 (如平均通量 Flu x a v x_{a v} xav ) 提供了非平衡系统全局特性的量化描述,帮助我们理解系统的整体热力学行为。

Lyapunov Function for the SL Model under Zero Fluctuations. A Lyapunov function is crucial for quantifying the global stability of ecological systems subject to perturbations. One might use the steady-state probability or the associated population potential to explore the global stability under finite fluctuations. However, the population potential is not a Lyapunov function in general (17) and it is often a challenging problem to find Lyapunov functions for complex nonequilibrium systems. Here we show that the intrinsic potential landscape, ϕ 0 \phi_0 ϕ0, is a Lyapunov function for the ecological dynamics in the zero-noise limit ( 17 , 43 ) (17,43) (17,43).

The probability P P P can be expanded according to the fluctuation strength D D D as P ( x ) = exp ⁡ ( − ( ϕ 0 ( x ) / D + ϕ 1 ( x ) + D ϕ 2 ( x ) + ⋯   ) ) / Z P(\mathbf{x})=\exp \left(-\left(\phi_0(\mathbf{x}) / D+\phi_1(\mathbf{x})+D \phi_2(\mathbf{x})+\cdots\right)\right) / Z P(x)=exp((ϕ0(x)/D+ϕ1(x)+Dϕ2(x)+))/Z, where Z = Z= Z= ∫ exp ⁡ ( − U ( x ) ) d x \int \exp (-U(\mathbf{x})) d \mathbf{x} exp(U(x))dx. By substituting it into Eq. 2, we obtain the D − 1 D^{-1} D1 order expansion of the Fokker-Planck equation, which has the largest contribution to the probability under the zero-noise limit. This yields the Hamilton-Jacobi equation (HJE):
H = F ⋅ ∇ ϕ 0 + ∇ ϕ 0 ⋅ G ⋅ ∇ ϕ 0 = 0. \mathbf{H}=\mathbf{F} \cdot \nabla \phi_0+\nabla \phi_0 \cdot \mathbf{G} \cdot \nabla \phi_0=0 . H=Fϕ0+ϕ0Gϕ0=0.The time evolution of ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) is thus given by ϕ ˙ 0 ( x ) = x ˙ ⋅ ∇ ϕ 0 = F ⋅ ∇ ϕ 0 = \dot{\phi}_0(\mathbf{x})=\dot{\mathbf{x}} \cdot \nabla \phi_0=\mathbf{F} \cdot \nabla \phi_0= ϕ˙0(x)=x˙ϕ0=Fϕ0= − ∇ ϕ 0 ⋅ G ⋅ ∇ ϕ 0 ≤ 0 -\nabla \phi_0 \cdot \mathbf{G} \cdot \nabla \phi_0 \leq 0 ϕ0Gϕ00. The value of ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) monotonically decreases along the deterministic trajectories under the zero-fluctuation limit since G \mathbf{G} G is positive definite. Therefore, ϕ 0 \phi_0 ϕ0 is a Lyapunov function and can be used to quantify the global stability of the systems. Furthermore, ϕ 0 \phi_0 ϕ0 is linked with the steady-state probability and population-potential landscape as U = − ln ⁡ P s s ∼ ϕ 0 / D U=-\ln P_{s s} \sim \phi_0 / D U=lnPssϕ0/D. The solution ϕ 0 \phi_0 ϕ0 of the Hamilton-Jacobi equation, which is the zero-fluctuation limit of the solution to the Fokker-Planck equation, is called the intrinsic potential of the system ( 17 , 43 ) (17,43) (17,43).

In the zero-fluctuation limit, the force F \mathbf{F} F can be decomposed into a gradient term and a curl term F = − G ⋅ ∇ ϕ 0 + ( J s s / P s s ) ∣ D → 0 = − G ⋅ ∇ ϕ 0 + V \mathbf{F}=-\mathbf{G} \cdot \nabla \phi_0+\left.\left(\mathbf{J}_{s s} / P_{s s}\right)\right|_{D \rightarrow 0}=-\mathbf{G} \cdot \nabla \phi_0+\mathbf{V} F=Gϕ0+(Jss/Pss)D0=Gϕ0+V, where − G ⋅ ∇ ϕ 0 -\mathbf{G} \cdot \nabla \phi_0 Gϕ0 represents the gradient of the nonequilibrium intrinsic potential. We set V = ( J s s / P s s ) D → 0 \mathbf{V}=\left(\mathrm{J}_{s s} / P_{s s}\right)_{D \rightarrow 0} V=(Jss/Pss)D0 as the intrinsic steady-state flux velocity. J s s ∣ D → 0 \left.J_{s s}\right|_{D \rightarrow 0} JssD0 represents the steady-state intrinsic divergence free curl flux due to ∇ ⋅ V = 0 \nabla \cdot \mathbf{V}=0 V=0. From the Hamilton-Jacobi equation, the relationship between ϕ 0 \phi_0 ϕ0 and the intrinsic flux is thus ( J s s / P s s ) ∣ D → 0 ⋅ ∇ ϕ 0 = V \left.\left(\mathrm{J}_{s s} / P_{s s}\right)\right|_{D \rightarrow 0} \cdot \nabla \phi_0=\mathbf{V} (Jss/Pss)D0ϕ0=V. ∇ ϕ 0 = 0 \nabla \phi_0=0 ϕ0=0. This implies that the gradient of the intrinsic potential and the intrinsic flux are perpendicular to each other in the zero-fluctuation limit.

Due to the normalization condition in the SL model, the state space becomes an isosceles triangle, making calculation of ϕ 0 \phi_0 ϕ0 very difficult. To overcome this problem, we approximate the Lyapunov function ϕ 0 \phi_0 ϕ0 from the expansion of the potential U ( x ) U(x) U(x) for the small diffusion coefficient D D D as U ( x ) = ϕ 0 ( x ) / D + ϕ 1 ( x ) + … U(\mathbf{x})=\phi_0(\mathbf{x}) / D+\phi_1(\mathbf{x})+\ldots U(x)=ϕ0(x)/D+ϕ1(x)+ We applied the linear fit method for the diffusion coefficient D D D versus the D U D U DU to solve the ϕ 0 \phi_0 ϕ0 approximately. We use the data of 0.0002 < D < 0.0005 0.0002<D<0.0005 0.0002<D<0.0005 to fit a line, which is the diffusion coefficient D D D versus D ln ⁡ P s s D \ln P_{s s} DlnPss. Thus, the slope of the line leads to the value of ϕ 0 ( 43 , 45 ) \phi_0(43,45) ϕ0(43,45). The results are shown later in this paper. An exact numerical solution of the Hamilton-Jacobian equation for the intrinsic potential landscape ϕ 0 \phi_0 ϕ0 under a specific choice of diffusion matrix mimicking the population evolution dynamics is demonstrated in SI Appendix.

Lyapunov 函数和 SL 模型

  1. Lyapunov 函数的重要性: Lyapunov 函数是用于量化生态系统在受到扰动时的全局稳定性的重要工具。它可以帮助我们理解系统在面对各种干扰时的行为。
  2. 人口潜力与 Lyapunov 函数: 虽然人口潜力 ( U ) (U) (U) 通常用于探索有限波动下的全局稳定性,但它一般不是 Lyapunov 函数。对于复杂的非平衡系统,找到 Lyapunov 函数通常是一个挑战。

Lyapunov 函数:如果函数 V V V 是全局正定、径向无界的,且时间导数是全局负定:
V ˙ ( x ) < 0 ∀ x ∈ R n \ { 0 } , \dot{V}(x)<0 \quad \forall x \in \mathbb{R}^n \backslash\{0\}, V˙(x)<0xRn\{0},
那么平衡点被证明是全局渐近稳定的。
李亚普诺夫候选函数 V ( x ) V(x) V(x) 是径向无界的,如果
∥ x ∥ → ∞ ⇒ V ( x ) → ∞ \|x\| \rightarrow \infty \Rightarrow V(x) \rightarrow \infty xV(x)

零噪声极限下的内在势能景观 ϕ 0 \phi_0 ϕ0

  1. 概率的展开: 概率 P ( x ) P(\mathbf{x}) P(x) 可以根据波动强度 D D D 展开,其中 ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) 是展开中的主要项。
  2. Hamilton-Jacobi 方程: 通过将概率的展开代入 Fokker-Planck 方程,可以得到 Hamilton-Jacobi 方程。这个方程描述了在零噪声极限下系统的行为。
  3. ϕ 0 \phi_0 ϕ0 的时间演化: ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) 随时间的变化表明它沿着确定性轨迹单调递减,因为 G \mathbf{G} G 是正定的。因此, ϕ 0 \phi_0 ϕ0 是一个 Lyapunov 函数,可以用来量化系统的全球稳定性。

接下来我来解释为什么 ϕ 0 \phi_0 ϕ0 是Lyapunov 函数。

  1. 时间演化的性质: ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) 随时间的变化表明它沿着确定性轨迹单调递减。这意味着,无论系统开始于状态空间中的哪个点, ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) 都会随着时间的推移而减小。
  2. 正定性: 在这个特定的系统中,矩阵 G \mathbf{G} G 被假设为正定的。正定矩阵具有一些重要的性质,包括它们的所有特征值都是正的。这意味着 ∇ ϕ 0 ⋅ G ⋅ ∇ ϕ 0 \nabla \phi_0 \cdot \mathbf{G} \cdot \nabla \phi_0 ϕ0Gϕ0 总是非负的,从而保证了 ϕ ˙ 0 ( x ) ≤ 0 \dot{\phi}_0(\mathbf{x}) \leq 0 ϕ˙0(x)0 。(这个也可以考虑由 ϕ 0 \phi_0 ϕ0是单调递减获得)
  3. 全局稳定性的量化: 由于 ϕ 0 ( x ) \phi_0(\mathbf{x}) ϕ0(x) 沿着系统的轨迹单调递减,并且在稳定点处达到最小值,它可以用来量化系统的全局稳定性。换句话说,它提供了一种方法来评估系统对扰动的反应,以及系统如何随时间恢复到其稳定状态。

力的分解和内在通量

  1. 力的分解: 在零波动极限下,力 F \mathbf{F} F 可以分解为梯度项和旋度项。梯度项代表非平衡内在势能的梯度。
  2. 内在稳态通量速度: V \mathbf{V} V 被定义为内在稳态通量速度,代表了由于内在势能梯度产生的通量。
  3. 内在通量与势能梯度的关系: 内在通量与势能梯度在零波动极限下是垂直的。

计算 ϕ 0 \phi_0 ϕ0 的方法

  1. 近似方法: 由于状态空间变成等腰三角形,直接计算 ϕ 0 \phi_0 ϕ0 非常困难。因此,作者采用了一种近似方法,通过对小扩散系数 D D D 的潜力 U ( x ) U(x) U(x) 进行展开来近似 ϕ 0 \phi_0 ϕ0
  2. 线性拟合方法: 使用线性拟合方法来解决 ϕ 0 \phi_0 ϕ0 ,即通过拟合扩散系数 D D D D ln ⁡ P s s D \ln P_{s s} DlnPss 的关系来近似求解 ϕ 0 \phi_0 ϕ0
  3. 结果展示: 文章后续部分展示了使用这种方法得到的结果,以及在特定扩散矩阵选择下, Hamilton-Jacobi 方程的精确数值解。

Nonequilibrium Thermodynamics, Entropy, Energy, and Free Energy of the General Dynamical Systems under the Zero-Fluctuation Limit and the Finite Fluctuations. In equilibrium systems, we can quantify the equilibrium probability distribution and the partition function as well as the entropy and free energy according to the underlying interacting potential energy. The partition function provides a statistical description for the collection of states in the system. For nonequilibrium systems, the intrinsic potential ϕ 0 \phi_0 ϕ0 can be related to the steady-state probability distribution under the zero-fluctuation limit as P s s ( x ) = P s s ( x ) ∣ D → 0 = exp ⁡ ( − ϕ 0 / D ) / Z \mathcal{P}_{s s}(\mathbf{x})=\left.P_{s s}(\mathbf{x})\right|_{D \rightarrow 0}=\exp \left(-\phi_0 / \mathcal{D}\right) / \mathcal{Z} Pss(x)=Pss(x)D0=exp(ϕ0/D)/Z, where D = \mathcal{D}= D= D ∣ D → 0 \left.D\right|_{D \rightarrow 0} DD0. The partition function Z \mathcal{Z} Z is defined as Z = ∫ exp ⁡ ( − ϕ 0 / D ) d x \mathcal{Z}=\int \exp \left(-\phi_0 / \mathcal{D}\right) d \mathbf{x} Z=exp(ϕ0/D)dx. Thus, ϕ 0 = − D ln ⁡ ( Z P s s ) \phi_0=-\mathcal{D} \ln \left(\mathcal{Z} \mathcal{P}_{s s}\right) ϕ0=Dln(ZPss).

The entropy of the nonequilibrium system under the zero-fluctuation limit can be defined by S = − ∫ P ( x , t ) ln ⁡ P ( x , t ) d x ( 4 , 17 , 31 , 43 ) \mathcal{S}=-\int \mathcal{P}(\mathbf{x}, t) \ln \mathcal{P}(\mathbf{x}, t) d \mathbf{x}(4,17,31,43) S=P(x,t)lnP(x,t)dx(4,17,31,43). The intrinsic energy E \mathcal{E} E of the nonequilibrium system can be defined as E = ∫ ϕ 0 P ( x , t ) d x = − D ∫ ln ⁡ ( Z P ss  ) P ( x , t ) d x \mathcal{E}=\int \phi_0 \mathcal{P}(\mathbf{x}, t) d \mathbf{x}=-\mathcal{D} \int \ln \left(\mathcal{Z P}_{\text {ss }}\right) \mathcal{P}(\mathbf{x}, t) d \mathbf{x} E=ϕ0P(x,t)dx=Dln(ZPss )P(x,t)dx. Thus, the intrinsic free energy of the nonequilibrium system can be defined as F = E − D S = \mathcal{F}=\mathcal{E}-\mathcal{D} \mathcal{S}= F=EDS= D ( ∫ P ln ⁡ ( P / P s s ) d x − ln ⁡ Z ) \mathcal{D}\left(\int \mathcal{P} \ln \left(\mathcal{P} / \mathcal{P}_{s s}\right) d \mathbf{x}-\ln \mathcal{Z}\right) D(Pln(P/Pss)dxlnZ).

The nonequilibrium intrinsic free energy always decreases since d F d t = \frac{d \mathcal{F}}{d t}= dtdF= − D 2 ( ∫ [ ∇ ln ⁡ ( P P s s ) ⋅ G ⋅ ∇ ln ⁡ ( P P s s ) ] P d x ) ≤ 0 ( 17 , 43 ) -\mathcal{D}^2\left(\int\left[\nabla \ln \left(\frac{\mathcal{P}}{\mathcal{P}_{s s}}\right) \cdot \mathbf{G} \cdot \nabla \ln \left(\frac{\mathcal{P}}{\mathcal{P}_{s s}}\right)\right] \mathcal{P} d \mathbf{x}\right) \leq 0(17,43) D2([ln(PssP)Gln(PssP)]Pdx)0(17,43). The minimum value of the nonequilibrium intrinsic free energy is F = − D ln ⁡ Z \mathcal{F}=-\mathcal{D} \ln \mathcal{Z} F=DlnZ. This represents the second law of thermodynamics for nonequilibrium systems. Therefore, the nonequilibrium intrinsic free energy is a Lyapunov function and, as we show presently, it can be used to quantify the global stability of the nonequilibrium system.

We also explore the nonequilibrium free energy under finite fluctuations D D D. The energy E \mathcal{E} E of the nonequilibrium system under finite fluctuations can be defined as E = ∫ D U P d x \mathcal{E}=\int D U P d \mathbf{x} E=DUPdx, and the entropy under finite fluctuations is S entropy  = − ∫ P ln ⁡ P d x S_{\text {entropy }}=-\int P \ln P d \mathbf{x} Sentropy =PlnPdx. Thus, the free energy under finite fluctuations is shown as F = E − D S entropy  = D ∫ P ln ⁡ ( P / P s s ( x ) ) d x ( 17 , 43 ) \mathcal{F}=\mathcal{E}-D S_{\text {entropy }}=D \int P \ln \left(P / P_{s s}(\mathbf{x})\right) d \mathbf{x}(17,43) F=EDSentropy =DPln(P/Pss(x))dx(17,43). The nonequilibrium free energy under finite fluctuations also always decreases since d F d t = − D 2 ( ∫ [ ∇ ln ⁡ ( P P s s ) ⋅ G ⋅ ∇ ln ⁡ ( P P s s ) ] P d x ) ≤ 0 ( 17 , 43 ) \frac{d \mathcal{F}}{d t}=-D^2\left(\int\left[\nabla \ln \left(\frac{P}{P_{s s}}\right) \cdot \mathbf{G} \cdot \nabla \ln \left(\frac{P}{P_{s s}}\right)\right] P d \mathbf{x}\right) \leq 0(17,43) dtdF=D2([ln(PssP)Gln(PssP)]Pdx)0(17,43). This shows that free energy under finite fluctuations is also a Lyapunov function ( 17 , 43 ) (17,43) (17,43), which can be used to quantify the global stability of the nonequilibrium system.

Kinetic Speed and Dominant Paths between the Stable States. The pathintegral approach can be used to identify and quantify the most likely transitions between two stable states. The path-integral formula characterizing the probability of the path from initial state x i x_i xi at t = 0 t=0 t=0 to final state x f \mathbf{x}_f xf at time t t t is given by ( 17 , 32 ) P ( x f , t ∣ x i , 0 ) = ∫ D x exp ⁡ [ − ∫ d t ( 1 2 ∇ ⋅ F ( x ) + (17,32) P\left(\mathbf{x}_f, t \mid \mathbf{x}_i, 0\right)=\int D \mathbf{x} \exp \left[-\int d t\left(\frac{1}{2} \nabla \cdot \mathbf{F}(\mathbf{x})+\right.\right. (17,32)P(xf,txi,0)=Dxexp[dt(21F(x)+ 1 4 ( d x / d t − F ( x ) ) ⋅ ( D G ) − 1 ⋅ ( d x / d t − F ( x ) ) ) ] = ∫ D x exp ⁡ [ − A ( x ) ] = ∫ D x exp ⁡ [ − \left.\left.\frac{1}{4}(d \mathbf{x} / d t-\mathbf{F}(\mathbf{x})) \cdot(D \mathbf{G})^{-1} \cdot(d \mathbf{x} / d t-\mathbf{F}(\mathbf{x}))\right)\right]=\int D \mathbf{x} \exp [-A(\mathbf{x})]=\int D \mathbf{x} \exp [- 41(dx/dtF(x))(DG)1(dx/dtF(x)))]=Dxexp[A(x)]=Dxexp[ ∫ L ( x ( t ) ) d t ] \left.\int L(\mathbf{x}(t)) d t\right] L(x(t))dt], where L ( x ( t ) ) L(\mathbf{x}(t)) L(x(t)) is the Lagrangian and A ( x ) A(\mathbf{x}) A(x) is the action for each path on the potential landscapes. The path integral over D x D \mathbf{x} Dx represents the sum over all possible paths connecting x i \mathbf{x}_i xi at time 0 to x f \mathbf{x}_f xf at time t t t. The exponential factor gives the weight of each specific trajectory and the probability of going from x i \mathbf{x}_i xi to x f \mathbf{x}_f xf is thus the weighted sum over all possible paths. The path integral can be approximated by the path that contributes the most to the weight since the other paths’ contributions are exponentially small. We can find the dominant paths with the optimal weights through minimization of the action A ( x ) A(x) A(x) or Lagrangian L ( x ( t ) ) L(\mathbf{x}(t)) L(x(t)) as the dominant path probability is proportional to exp ⁡ [ − A ( x ) ] \exp [-A(x)] exp[A(x)]. Thus, we can identify the paths that give the largest contribution to the weight as the dominant savanna- forest switching pathways. The path-integral formalism here is based on the OnsagerMachlup functional for a diffusion process under finite fluctuations (46). Under the zero-noise limit, the divergence of the force term in the Onsager-Machlup functional can be ignored. As a result, the path-integral formalism is reduced to the form arising in the Freidlin-Wentzell theory (47).

生态动力学:景观通量方法与传统非线性动力学
我们在下表中展示了传统非线性动力学分析与景观通量理论的比较。在标准的确定性非线性动力学中,可以进行局部稳定性分析并识别稳定状态。然而,没有关于状态权重的信息,这些信息可以从概率景观通量方法中提供。此外,局部稳定性分析不能量化稳定状态之间的联系或转换路径,而这些特性可以通过景观通量方法来量化。此外,传统的非线性动力学分析通常不能提供关于系统全局稳定性的信息,这通常是由于难以找到合适的李雅普诺夫函数。景观通量方法可以提供一种识别Lyapunov函数的方法,从而量化全球稳定性。
这种方法提供的附加信息是从一种稳定状态切换到另一种稳定状态的困难程度,这一特性在现实世界的系统中可能具有重要的生态后果。类似地,虽然传统的非线性分析可以识别系统的分岔,但通常没有关于分岔如何发生以及这种分岔的可能起源的信息。这是理论生态学中最重要的未解决问题之一,可以在景观通量方法中通过寻找生态系统分叉的物理(动态和热力学)起源来解决。
在确定性非线性动力学中,模型中的驱动力仅在演化方程的右侧。然而,当系统受到噪声影响时,通常没有简单的方法来理解这种驱动力的性质。景观通量方法通过将驱动力确定为景观梯度和旋转通量的作用,为研究随机动力学提供了一个框架。我们也可以用EPR来量化相关的全局热力学。因此,景观通量方法为研究生态系统的整体动力学和热力学提供了一个总体框架。最后,在确定性非线性动力学中,稳定状态由相互作用产生。然而,在随机强迫的作用下,新的准稳定状态会出现,这些新状态可以用景观通量方法来预测。
传统非线性动力学分析与景观通量理论的比较

结果

通过势通量景观的动力学和热力学
非平衡人口-有限波动的潜在景观和通量。我们现在通过研究有限波动下的SL模型来说明景观通量方法对生态动力学的影响。稀树草原是指以草为主的状态,有一些树木和树苗,而森林是指以树为主的状态,很少有草和树苗。草原州没有树苗和树木。
图A显示了β(树苗出生率)的确定性相位图,而图2显示了β范围内D = 0.0001的二维人口潜力景观(U);在这两种情况下,系统都考虑有限波动。在图2中,种群潜力景观最初有一个稳定的状态,即从草原状态[即(G, T) =(1,0)]向稀树草原状态演变,并随着β的增加。随着β进一步增大,稳定的森林状态出现。随着β的增加,生态系统从稀树草原优势转向森林优势(如图A所示),随着β的进一步增加,由于树苗的高出生率,草地完全被树木入侵。最终,森林状态成为主导,而稀树草原状态消失。图3显示了人口潜力景观上的通量,白色箭头表示增加的β。为了清楚地显示通量,我们只给出通量较大值的方向,这些方向都在稳定状态周围。营养生长因子,如来自土壤、空气、水和阳光的营养和能量,会因环境的不同气候而变化。因此,当系统具有稀树草原和森林两种稳定状态时,源自植物的通量。
A:相图与β。B:总体熵产率与β。C:种群平均通量与β。图1:A:相图与β。B:总体熵产率与β。C:种群平均通量与β。
图A:草原在第一个SN处由稳定转为不稳定。出现了新的稳定疏树草原,在第二个SN处森林为稳定态。
图B:当 β \beta β的值较低时,系统处于相对靠近平衡状态的草原状态,在熵产生率增加或处于峰值时系统从旧的稳态转变到新的稳态,在新的稳态中,熵产生率可能会有所不同,有可能时增加也可能时减少,这取决于新稳态的特征。
图C:Flux是指生态系统状态变化的平均速度或强度。较低时,生态系统状态变化缓慢或较少,在更高的树苗出生率下,系统则变化剧烈,出现峰值和明显变化反映了动态的一个关键转变。

在这里插入图片描述
图2:二维人口潜力景观与有限波动D = 0.0001的β。

这里有一个问题:鞍结分岔应该是指一个稳定和一个不稳定在临界点处碰撞后消失,怎么会从一个稳态转变为另一个稳态呢?

每个子图的平面代表的是草和树的比例,也就是当幼苗数量 β \beta β一定时,原本的系统的初始比例在多少时的稳态现象。红色表示高势能,也就是不稳定,蓝色是最低的势能也就是稳定的。例如,当 β = 0.1 \beta=0.1 β=0.1时,如果初始比例在(0.99,0.01)则在长时间的变化中,系统一直都是稳定的,而在(0.1,0.9)内,系统则是不稳定的。随着\beta的增加,也就是幼苗数量的增加,系统的平衡发生了变化,从草原平衡到稀疏草原是发生的第一次鞍结分岔,从稀疏草原到森林是发生的第二次鞍结分岔。也就是说,稳态随着 β \beta β的增加,从草原平衡、稀疏不平衡到稀疏平衡、草原不平衡,再到森林平衡。
在这里插入图片描述图3显示了人口潜力景观上的通量,白色箭头表示增加的β。为了清楚地显示通量,我们只给出通量较大值的方向,这些方向都在稳定状态周围。营养生长因子,如来自土壤、空气、水和阳光的营养和能量,会因环境的不同气候而变化。因此,当系统具有稀树草原和森林两种稳定状态时,源自植物的通量。生长因子在稳定的状态中穿梭,加强了它们之间的交流。在图3中,人口潜力景观的负梯度和非零通量是森林-稀树草原生态系统的驱动力。

图3为不同参数下种群潜力景观U在有限波动条件下计算出的优势种群路径。再一次,稀树草原和森林是两个稳定的状态。红线为森林状态到稀树草原的优势种群路径,粗白线为稀树草原状态到森林状态的优势种群路径。白色箭头表示稳态概率通量,它引导优势种群路径偏离单纯基于种群潜力景观而经过鞍点的最陡下降路径。因此,与零通量下的平衡情况相比,从稀树草原到森林的优势种群路径和从森林到稀树草原的优势种群路径并不遵循相同的路径。

在生态学中,特别是在理论和数学生态学的研究中,“潜能景观”(有时也称为"适应性景观")是一个比喻,用于描述一个系统中不同种群或状态的相对稳定性或适应性。在这个比喻中,不同的状态(如森林和稀树草原)可以想象为在一个山丘和谷地构成的景观中的不同位置,其中山丘顶部代表不稳定的状态,谷底代表稳定的状态。
"稳态概率通量"则是描述在动态系统中,由于随机扰动和系统内部动力学导致的系统状态之间的概率流动。在您提供的图像中,这些通量被视觉化为白色箭头,它们显示了随时间推移系统状态如何通过这些概率流动而改变。
"优势种群路径"是指在这个潜能景观中,种群最有可能遵循的路径,从一个稳定状态(如森林)转变到另一个稳定状态(如稀树草原),或者相反。
这句话的意思是,虽然最直接的路径可能是沿着潜能最低的路径(即最陡的下降路径),但实际的种群动态路径会因为稳态概率通量的存在而偏离这条最直接的路径。换言之,系统的动态不仅仅由潜能景观的形状决定(即不仅仅是一个由能量最低点定义的问题),还受到这些概率流的影响,这些流可能会将系统状态沿着更复杂的路径推进。
两个优势种群路径是不同的,这表明由于非平衡旋转通量的存在,优势种群路径具有不可逆性。因此,从稀树草原到森林(白线)和从森林到稀树草原(红线)的优势种群路径将遵循不同的路线。较大波动(扩散系数D较大)下的两条优势种群路径如图D所示;由于存在如图c所示的稳态概率通量,这两个优势种群路径也彼此分开。通量在这两个盆地周围呈螺旋形状,这表明了非平衡系统的动态性质。
总结:对于图 3A,系统似乎是双稳态的 - 稀树草原和森林。当初始点位于森林附近时,随着时间的推移,它会被森林吸引,对于稀树草原也是如此。白色箭头指的是稳态概率通量,它是通量沿着初始点出发的通量方向前进的概率。指示的是初始比例在未来远离稳定状态时将走向的位置,例如,它将围绕稳定状态旋转,随后进入稳定状态区域。随着扩散系数 D 的增加,这个白色箭头会扩大。白线代表从稀树草原到森林过渡的未来路径。它也受到白色箭头的影响。

chatgpt对我上面总结的回答:你的理解是正确的。
双稳态:系统有两个稳定状态:稀树草原和森林。根据初始条件(树木与草的比例的起点),系统将随着时间的推移趋向于这些稳定状态之一。
对稳定状态的吸引力:如果初始点靠近森林状态,系统可能会向森林状态发展,对于稀树草原状态也是如此。
稳态概率通量(白色箭头):这些箭头显示稳态概率通量的方向。这意味着它们表明系统状态从初始点向某个方向移动的可能性。箭头展示了系统的状态如何旋转并最终进入稳定状态,受到环境相互作用和内部动态等各种因素的影响。
扩散系数 (D) 的影响:随着 D 的增加,系统中随机波动或“噪声”的影响也会增加。这可能会导致白色箭头扩大,表示由于不确定性增加,系统状态的未来可能路径范围更大。
过渡路径(白线):这条线代表系统从稀树草原过渡到森林状态时将采取的预测轨迹或路径。该路径受稳态概率通量的影响,如白色箭头所示,可能会导致路径偏离直接路线,包括围绕稳态的旋转运动。

红色和白色的线大致形成一个“8”形,强调切换的优势种群路径是不同的,因此过渡是“不可逆的”。白色路径线从稀树草原开始,初始通量力为逆时针方向,如图3所示。因此,从稀树草原到森林的优势种群路径与单纯基于景观梯度的路径相比,在通量力的作用下初始向上移动。当草G减小到接近θ1 = 0.4时,稀树草原幼树成虫补充率ω(G)达到阈值并急剧增加。因此,白色路径线到达它们的拐点,在那里通量改变方向为顺时针方向。因此,与纯粹基于景观坡度的路径相比,白色路径在通量力的作用下向下移动。同样,红色路径线从森林状态开始,初始通量力为顺时针方向,如图3所示。因此,在通量力的作用下,从森林状态到稀树草原状态的优势种群路径最初更多地向上移动。当草G增大到接近θ1 = 0.4时,热带稀树草原幼树成虫补充率ω(G)达到阈值并急剧下降。红色路径线到达它们的拐点,在那里通量变成逆时针方向。从那时起,由于通量的作用,红色路径向下移动。从生态学的角度来看,这一发现非常直观。要形成森林,树木必须首先长成小树苗,而它们不需要在死亡之前回归到小树苗,因此,当森林开放时,与热带草原关闭时相比,系统的组成是完全不同的(见参考文献48,以获得支持这一数学直觉的经验证据)。

在这里插入图片描述
在这里插入图片描述

图 S22 和图 S1 一样,展示了模拟生态系统两种状态之间过渡概率的生态研究中的各种图表: 热带稀树草原和森林。这些图包括几幅图,有助于了解不同参数如何影响这些状态之间的过渡路径。

让我们来解读图 S22 的主要内容:

  1. 图形 A 、 B A、B AB 和 C:
  • 这些图分别显示了不同参数值 ν 、 ω 0 \nu、\omega_0 νω0 θ 1 \theta_1 θ1下,从森林到稀树草原 A p o F S A_{poFS} ApoFS 和从稀树草原到森林 ( A p o S F ) (A_{poSF}) (ApoSF)的主要路径的种群作用 A p o A_{po} Apo
  • 种群作用是一种量化种群在不同状态间转换所需的 "努力 "的度量。种群作用值越高,表示该过渡路径的概率越低。
  1. 图表 D、E 和 F:
  • 这些是对数图,显示了从热带稀树草原向森林过渡和从森林向热带稀树草原过渡的指数化负种群行动的比率。根据参数 ν 、 ω 0 \nu、\omega_0 νω0 θ 1 \theta_1 θ1,它们量化了一种过渡与另一种过渡相比可能性的大小。
  1. 解释比率:
  • 在对数图中,正值表示从热带稀树草原过渡到森林的可能性大于从森林过渡到热带稀树草原的可能性,而负值则表示相反的情况。

比较转换:

当实线位于虚线之上时,表示与森林过渡到稀树草原的概率相比,从稀树草原过渡到森林的概率相对增加。
相反,当虚线高于实线时,从森林过渡到稀树草原的可能性更大。 变化幅度:

线的斜率越陡,转移概率对相应参数的变化越敏感。 平坦的线表明参数的变化对转移概率几乎没有影响。 图形拐点:

两条线交叉的任何点都特别值得注意。这些参数值在一个方向与另一个方向上转换的可能性相等。
线条曲率变化的拐点可能表明参数阈值,超过该阈值系统动力学就会发生根本性变化。 使用图表进行预测:

这些图表可用于预测 β 或 θ1 等参数的变化将如何影响系统的长期行为。
它们可以帮助识别参数的微小变化可能导致系统状态发生较大变化的关键点。 图 S1
中的图形提供了一种数学和视觉方式来理解生态模型中的复杂动态。通过研究这些图表,人们可以开始预测现实世界的生态系统如何应对某些关键因素的变化,例如新树苗的出生率或影响存活率的环境变化。

让我总结一下上面的两张图,例如图3中的A、B、C是稳态区域以及由于非线性影响而使稳态区域也成为稳态的过渡路径作为过渡路径,尤其是随着 β \beta β 的改变而变得更加弯曲的过渡路径。图3中的D是当有限涨落系统 D D D增大时,扩散区域扩大,稳态区域似乎发生了变化。此时,过渡路径(白线)的弯曲程度反而较小。这一切都说明了非线性和有限波动对稳态和转变的影响。对于图 3 中的 A,当 β = 0.34 \beta=0.34 β=0.34 时,白线和红线不重合,这意味着转变是不可逆的,但是当扰动发生时,我们无法确定它是否是特定的稀树草原到森林,反之亦然此时已设置为系统参数之一。因此作者给出了图S1,图S1的A、B、C图显示了针对不同参数切换路径方向的可能性。实线代表稀树草原到森林的转变,虚线代表森林到稀树草原的转变。从图A中发现,在 β < 0.38 \beta<0.38 β<0.38处,实线低于虚线,此时,应该是稀树草原转化为森林的可能性更大,而当 β = 0.38 \beta=0.38 β=0.38时,两条线相交,并且一个方向上的这些参数的值等于另一方向上的这些参数的值。转化的可能性相等。直线的斜率越陡,传递概率对相应参数的变化越敏感。平线表示参数的变化对转移概率影响很小。线曲率变化的拐点可以指示参数阈值,超过该阈值系统动力学就会发生根本性变化。图 S1 的图 D、E、F 是双对数图,显示了从稀树草原到森林以及从森林到稀树草原过渡时指数负种群行为的比率。根据参数 ν 、 ω 0 \nu、\omega_0 νω0 θ 1 \theta_1 θ1,它们量化一个转变相对于另一个转变的可能性大小。正值表示从稀树草原到森林的转变比从森林到稀树草原的转变更有可能,而负值表示相反的情况。
为了展示我对这个理解是正确的,将上面文字复制chatgpt中。
在这里插入图片描述

种群路径的权值表示有限波动下每条路径状态切换的概率

它可以用来量化从稀树草原到森林过渡的不同路线的可能性。优势种群路径概率可以用种群作用Apo(x)来量化,如图S1 (β,µ,θ1)和S22 (ν, ω0, ω1)所示。种群行为越大,优势种群路径概率越低,因为优势种群路径概率成正比exp(−Apo (x))。随着β的增大,优势种群从森林向稀树草原迁移的概率减小,而从稀树草原向森林迁移的概率增大。在µ,θ1, ν, ω0, ω1中,种群势景观的变化、通量、种群作用和优势种群路径见SI附录。

零波动极限下的内在势能景观和通量速度
Figure 4 shows the three-dimensional non-equilibrium intrinsic potential landscape ϕ 0 \phi_0 ϕ0 with increasing β \beta β. The intrinsic potential landscape changes from a dominant Savanna stable state to a Savanna and Forest coexisting stable state, and then to a dominant Forest stable state as β \beta β increases. The intrinsic flux and the negative gradient of the intrinsic potential landscape − ∇ ϕ 0 -\nabla \phi_0 ϕ0 are in fact perpendicular to each other and the two dominant intrinsic paths, calculated under the zero fluctuation limit, both pass through the saddle point denoted by the black dot; these facts can also be seen clearly in Figure S2 via a 2D projection.

The dominant intrinsic path probability can be quantified by the intrinsic action A in  ( x ) A_{\text {in }}(\mathbf{x}) Ain (x) shown in Figure S3 ( β , μ , θ 1 ) \left(\beta, \mu, \theta_1\right) (β,μ,θ1) and Figure S25 ( ν , ω 0 , ω 1 ) \left(\nu, \omega_0, \omega_1\right) (ν,ω0,ω1). The results of the intrinsic actions have the same tendencies with those of the population actions.

Throughout the main text and in the first 6 sections of the SI, the diffusion matrix G \mathbf{G} G is an isotropic and homogeneous diagonal matrix. In section 7 of the SI, we present results for certain anisotropic and inhomogeneous fluctuations characterized by different choices of diffusion matrices. We perform a coordinate transformation from a special diffusion matrix in an isosceles triangle into an inhomogeneous diagonal matrix in a square (see Figure S40). Thus, we can numerically solve the Hamilton-Jacobi equation in a regular Figure 4 shows the three-dimensional non-equilibrium intrinsic potential landscape ϕ 0 \phi_0 ϕ0 with increasing β \beta β. The intrinsic potential landscape changes from a dominant Savanna stable state to a Savanna and Forest coexisting stable state, and then to a dominant Forest stable state as β \beta β increases. The intrinsic flux and the negative gradient of the intrinsic potential landscape − ∇ ϕ 0 -\nabla \phi_0 ϕ0 are in fact perpendicular to each other and the two dominant intrinsic paths, calculated under the zero fluctuation limit, both pass through the saddle point denoted by the black dot; these facts can also be seen clearly in Figure S2 via a 2D projection.

The dominant intrinsic path probability can be quantified by the intrinsic action A in  ( x ) A_{\text {in }}(\mathbf{x}) Ain (x) shown in Figure S3 ( β , μ , θ 1 ) \left(\beta, \mu, \theta_1\right) (β,μ,θ1) and Figure S25 ( ν , ω 0 , ω 1 ) \left(\nu, \omega_0, \omega_1\right) (ν,ω0,ω1). The results of the intrinsic actions have the same tendencies with those of the population actions.

Throughout the main text and in the first 6 sections of the SI, the diffusion matrix G \mathbf{G} G is an isotropic and homogeneous diagonal matrix. In section 7 of the SI, we present results for certain anisotropic and inhomogeneous fluctuations characterized by different choices of diffusion matrices. We perform a coordinate transformation from a special diffusion matrix in an isosceles triangle into an inhomogeneous diagonal matrix in a square (see Figure S40). Thus, we can numerically solve the Hamilton-Jacobi equation in a regular square shape with the resulting diagonal matrix [36, 14]. Results for the anisotropic and inhomogeneous
fluctuations are qualitatively similar to those with the isotropic and homogeneous diffusion matrices。
图4为三维非平衡本征势图φ0随β增大。随着β的增大,内在潜在景观从优势稀树草原稳定状态,到稀树草原与森林共存稳定状态,再到优势森林稳定状态。内禀通量与内禀势景观−∇φ0的负梯度实际上是相互垂直的,在零波动极限下计算的两个优势内禀路径都经过黑点表示的鞍点;这些事实也可以通过二维(2D)投影在SI附录图S2中清楚地看到。

显性本征路径概率可以用SI附录图S3 (β,µ,θ1)和SI附录图S25 (ν, ω0, ω1)所示的本征作用Ain(x)来量化。内在作用的结果与群体作用的结果具有相同的趋势。

在全文和SI附录1-6节中,扩散矩阵G是一个各向同性的齐次对角矩阵。在SI附录第7节中,我们给出了以不同扩散矩阵选择为特征的某些各向异性和非均匀波动的结果。我们将等腰三角形中的特殊扩散矩阵转换为正方形中的非齐次对角矩阵(SI附录,图S43)。因此,我们可以用得到的对角矩阵(17,43)数值解出正方形的Hamilton-Jacobi方程。各向异性和非均匀波动的结果在性质上与各向同性和均匀扩散矩阵的结果相似(SI附录,图S44)。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

势垒高度和态间转换的动力学速率

图5A表示有限波动下人口潜力景观的屏障高度作为β的函数。与β相比,在零波动情况下,内在电位景观的势垒高度示于SI附录,图5a。∆u为森林到稀树草原的屏障高度,∆us为稀树草原到森林的屏障高度。∆φ0F表示森林到稀树草原的固有屏障高度,∆φ0S表示稀树草原到森林的固有屏障高度。

随着β的增加,种群屏障高度∆UF和内在屏障高度∆φ0F增加,而∆US和∆φ0S减小。从吸引力盆地底部到屏障顶部的高屏障高度意味着很难从吸引力盆地的这种状态中逃脱。因此,∆UF越大表示森林状态更稳定,∆US越大表示热带草原状态更稳定。随着树苗出苗率β的增加,树龄越高,森林状态越稳定,而稀树草原状态越不稳定。因此,当β足够大时,森林-稀树草原系统从稀树草原优势转向森林优势。人口潜力景观的屏障高度与内在潜力景观的内在屏障高度具有几乎相同的定性特征(参见图A和SI附录,图S5A)。种群势势图和内禀势势图的势垒高度随β、µ、θ1、ν、ω0和ω1的函数见SI附录图。S4和S5。

由于随机波动或其他外力的作用,生态系统可能不会停留在其当前稳定状态的吸引盆地中,而可能脱离该盆地,使系统切换到另一种稳定状态。平均首次通过时间(MFPT)是随机过程第一次达到给定阈值(状态)的平均时间。MFPT可以用来量化从一种状态切换到另一种状态的动力学速度或动力学时间,这两者都是系统逃离当前吸引力盆地趋势的自然测量。

我们使用Langevin动力学来模拟随机SL模型,研究MFPT从一个稳定状态到另一个稳定状态的分布:我们选择一个稳定状态作为初始条件,在另一个稳定状态周围半径为r0 = 0.01的圆盘作为目标最终“状态”。然后,我们收集从初始状态到最终状态的首次通过时间的统计数据,然后对所有模拟进行平均,以计算平均首次通过时间(执行了40,000次模拟以获得所示结果)。τSF为热带稀树草原到森林的MFPT, τFS为森林到热带稀树草原的MFPT。我们在图B中显示了MFPT对β的对数,并观察到随着β的增加,ln τSF减小,ln τFS增大。换句话说,随着树苗出生率的增加,从稀树草原到森林的转换变得更容易,从森林到稀树草原的转换变得更难。

Barrier height是指初始点在低势能的"谷底",要爬到山峰需要能量.
ln ⁡ τ F S \ln \tau_{FS} lnτFS(从森林到稀树草原的MFPT的对数)与 Δ U F \Delta U_F ΔUF(从森林到稀树草原的势能障碍高度)直接相关。这表明,势能障碍越高,或者说"山谷"越深,系统从当前状态逃逸到另一个状态所需的时间就越长。这表明种群-势能景观地形通常与状态切换的动力学速度相关,从而影响生态系统的全球稳定性。

也就是说,平面上的一个点代表的是系统在这个比例状态下的长期运动状态的一个概率。例如在\beta=0.1时,平面上(0.99,0.1)这个点位于蓝色低势能区域,也就是当系统的初始状态是这个比例时,系统是稳定的。而对于(0.2,0.3)这个位于红高势能区域的点,当系统的初始状态是这个比例时,系统是不稳定的。
鞍结分岔(Saddle-Node Bifurcation)是一种常见的分岔类型,在这种情况下,随着系统参数(如β)的变化,稳定和不稳定的固定点会一对一对地出现或消失。在鞍结分岔点,系统会经历一个临界转变,其中一个稳定状态和一个不稳定状态合并消失,或者新的稳定和不稳定状态对出现。这就是为什么在鞍结分岔点附近可能会看到两个稳态的原因。

在生态系统中,这可以表示为在某些条件下,系统可能存在两个稳定的吸引子(比如草原和疏树草原),它们之间存在一个不稳定的状态。随着 β 的增加,这两个稳定状态中的一个可能会消失,留下另一个稳定状态成为系统的唯一吸引子。例如,一个稳定的草原状态可能会随着树苗出生率的增加而变得不稳定,并转变为稳定的疏树草原或森林状态。图2中\beta=0.35,0.38,0.4其实是一个鞍结分岔变化的过程。

这段文字讲述了一组参数在非平衡系统中如何影响相变点、系统的熵产生率(EPR),以及种群通量(Fluxav)。以下是其要点的解释:

相变点:在系统的参数空间中,存在两个相变点,这可以在图1A中看到。相变点是系统参数发生变化时,系统性质发生根本性变化的点。

熵产生率(EPR)与β的关系:图1B描绘了熵产生率与参数β之间的关系。通常,熵产生率是描述非平衡系统热力学行为的关键量度,代表了系统不可逆过程的强度。

种群通量与β的关系:图1C显示了种群平均通量(系统状态变化的平均速率)与参数β之间的关系。随着β的增加,种群通量和EPR都先是显著升高,随后略有下降。

鞍节点分岔:文中提到,在鞍节点分岔点,系统的行为发生突变,会在一个相变区存在两个共存的稳定状态。这种分岔通常标志着系统动态的一个重要转折点。

非平衡力的作用:在非平衡系统中,梯度力趋向于将系统拉向稳定点(吸引子),而通量力由于其旋转性质可能会破坏现有状态,促进状态之间的流动。

共存状态的稳定性:在相变区,共存状态的稳定性不仅由各自的状态决定,还受到两个状态之间相互联系的影响。这种状态下,系统可能会探索更多的状态空间,相比只有一个稳定状态的情况,需要更多的平均通量来维持这些共存状态。

热力学成本:为了维持共存状态及其关联,系统似乎需要更多的平均通量,这也导致了更大的热力学成本或者说是系统耗散的增加。

EPR和Fluxav的峰值:由于上述效应,EPR和Fluxav在分岔区出现了峰值,这表明在这些点系统的动态特别活跃,熵产生率和通量都有显著的变化。

参数的广泛影响:进一步的分析表明,在不同参数及其变化下,熵产生率和通量在两个鞍节点分岔附近都有显著变化,说明了相同的现象在不同的参数条件下也是普遍存在的。

总之,这段文字强调了在非平衡动态系统中,如何通过熵产生率和种群通量等物理量度来识别和分析系统的临界行为,以及这些量度在系统经历相变时的变化情况。

这段文字讨论了在非平衡生态动力学中,森林和稀树草原环境中种群通量(Fluxav)和熵产生率(EPR)的比较,以及这些指标如何用于分析生态系统的全局稳定性和分岔性。以下是关键点的解释:
森林的EPR和Fluxav:发现森林环境中的种群具有更高的熵产生率和通量,意味着在森林环境中,树木需要更多的营养生长因子、更多的营养和能量。这可能是因为森林生态系统通常更加复杂,树木的生长和维持需要较大的资源输入。
稀树草原的资源需求:与森林相比,稀树草原环境需要较少的营养生长因子、营养和能量。这可能反映了稀树草原环境相对简单的生态系统结构。
参数β的作用:种群的Fluxav和EPR在参数β的变化方面表现出类似的趋势,如图1BC所示。这表明β是影响这两个生态系统特性的重要因素。
预警信号的作用:种群的Fluxav和EPR的变化可能作为生态系统接近分岔点或临界状态的预警信号。这种信号可以帮助识别生态系统状态即将发生重大变化的时刻。
非平衡生态动力学的分析:通过监测和分析种群的Fluxav和EPR,可以探索非平衡生态动力学中的全球稳定性和分岔性。这种分析可以揭示生态系统在受到外部压力或内部变化时的响应模式。
总的来说,这段文字强调了在理解和预测生态系统的动态行为方面,Fluxav和EPR作为非平衡动力学指标的重要性。通过比较不同生态系统的这些指标,可以更好地理解它们的稳定性和可能的状态转换。

Long-time trajectories of the SL model with the default values of the parameters and D = 0.0005 D=0.0005 D=0.0005 are shown in Figure 6A to illustrate this noise induced attractor switching from a pathwise perspective. The average of the differences between the two-point cross correlations forward and backward in time can be used to measure the time irreversibility and therefore the degree of detailed balance breaking [42, 43, 29]. The cross correlation function is defined as:
C X Y ( τ ) = ⟨ X ( 0 ) Y ( τ ) ⟩ = ∑ X i Y j P i s s P i j ( τ ) C_{X Y}(\tau)=\langle X(0) Y(\tau)\rangle=\sum X^i Y^j P_i^{s s} P_{i j}(\tau) CXY(τ)=X(0)Y(τ)⟩=XiYjPissPij(τ)
where X X X and Y Y Y denote the time trace signals of variables X X X and Y . P i s s Y . P_i^{s s} Y.Piss represents the steady state probability at state i i i and P i j ( τ ) P_{i j}(\tau) Pij(τ) represents the probability from state i i i to state j j j with time interval τ \tau τ [42, 43]. The nonequilibrium steady state probability flux, J i j s s J_{i j}^{s s} Jijss, is defined as: J i j s s = P i s s k i j − P j s s k j i J_{i j}^{s s}=P_i^{s s} k_{i j}-P_j^{s s} k_{j i} Jijss=PisskijPjsskji, since τ P i j ( τ ) ∼ k i j τ \tau P_{i j}(\tau) \sim k_{i j} \tau τPij(τ)kijτ for small time interval τ \tau τ, where k i j k_{i j} kij denotes the transition rate from state i i i to state j j j, while k j i k_{j i} kji denotes the transition rate from state j j j to state i i i. The difference between the forward cross correlation function C X Y ( τ ) C_{X Y}(\tau) CXY(τ) in time and backward cross correlation function C Y X ( τ ) C_{Y X}(\tau) CYX(τ) in time is given by [42, 43]: C X Y ( τ ) − C Y X ( τ ) = X A Y B [ P A s s P A B ( τ ) − P B s s P B A ( τ ) ] = X A Y B J A B s s τ C_{X Y}(\tau)-C_{Y X}(\tau)=X^A Y^B\left[P_A^{s s} P_{A B}(\tau)-P_B^{s s} P_{B A}(\tau)\right]=X^A Y^B J_{A B}^{s s} \tau CXY(τ)CYX(τ)=XAYB[PAssPAB(τ)PBssPBA(τ)]=XAYBJABssτ, where J A B s s = J_{A B}^{s s}= JABss= 1 X A Y B lim ⁡ τ → 0 C X Y ( τ ) − C Y X ( τ ) τ \frac{1}{X^A Y^B} \lim _{\tau \rightarrow 0} \frac{C_{X Y}(\tau)-C_{Y X}(\tau)}{\tau} XAYB1limτ0τCXY(τ)CYX(τ).
这段文字详细描述了如何使用SL模型来分析非平衡稳态系统中的噪声诱导的吸引子切换,并如何通过时间不可逆性和详细平衡破坏的程度来量化这一过程。关键概念包括:
SL模型的长时间轨迹:图6A展示了在特定参数值(包括 D = 0.0005 D=0.0005 D=0.0005)下SL模型的长时间轨迹,这有助于从路径视角理解噪声如何诱导系统从一个吸引子状态切换到另一个。
两点交叉相关:通过测量两点交叉相关在时间上前向和后向的差异,可以量化系统的时间不可逆性,以及详细平衡的破坏程度。这种度量基于交叉相关函数 C X Y ( τ ) C_{XY}(\tau) CXY(τ)的定义。
交叉相关函数:交叉相关函数 C X Y ( τ ) C_{XY}(\tau) CXY(τ)定义为变量 X X X Y Y Y在时间延迟 τ \tau τ下的平均相关性,用于描述这两个变量随时间变化的相互依赖性。
稳态概率流 J i j s s J_{ij}^{ss} Jijss:在非平衡稳态中,稳态概率流被定义为 J i j s s = P i s s k i j − P j s s k j i J_{ij}^{ss}=P_i^{ss} k_{ij}-P_j^{ss} k_{ji} Jijss=PisskijPjsskji,它代表在状态 i i i和状态 j j j之间的净概率流动。
前向和后向交叉相关的差异:前向交叉相关函数 C X Y ( τ ) C_{XY}(\tau) CXY(τ)与后向交叉相关函数 C Y X ( τ ) C_{YX}(\tau) CYX(τ)的差异可以用来衡量非平衡稳态下的时间不可逆性。
通过这种分析,可以深入理解非平衡系统中的动态行为,尤其是在系统状态受到随机噪声影响时的行为。这种方法的应用不仅限于理论模型,还可以扩展到实际的生物、生态或物理系统中,以研究其非平衡动态特性。

两点交叉相关:首先,两点交叉相关是一个统计度量,用于描述两个时间序列或信号之间在不同时间点的相关性。在这里,它被用来测量变量 X X X Y Y Y之间在时间延迟 τ \tau τ下的相关性。

时间上的前向和后向:交叉相关可以在时间上前向(例如, X X X现在和 Y Y Y在未来)和后向(例如, X X X现在和 Y Y Y在过去)测量。在非平衡系统中,这两种测量通常会给出不同的结果,这是由于系统的时间不可逆性。

时间不可逆性:在物理学中,时间不可逆性指的是一个过程在时间上不能简单逆转。在非平衡系统中,由于外部驱动或内部过程的不对称性,系统的行为在时间上向前和向后不是镜像对称的。

详细平衡的破坏:详细平衡是指在平衡状态下,任何两个状态之间的转移率在正向和反向上是相等的。在非平衡系统中,这种平衡被打破,正向和反向的转移率不再相等。

量化方法:通过比较时间上前向和后向的交叉相关,可以量化系统偏离详细平衡的程度。这种偏离程度是系统时间不可逆性的一个表征。具体来说,如果在正向和反向测量中交叉相关的差异较大,表明系统的时间不可逆性更明显,详细平衡的破坏程度也更大。

所提供的文本全面介绍了如何使用数学和物理概念来分析生态系统的稳定性和动态。以下是讨论的要点的细分:

人口潜力和卷曲通量:

生态系统的动态受到人口潜力和旋度通量的影响,人口潜力将系统推向较低潜力的状态(类似于滚下山的球),旋度通量封装了不同状态之间的概率转换(盆地)吸引力)。
稳态概率通量:

这个概念描述了系统内驱动非平衡动力学的固有运动。它具有无发散卷曲性质,这意味着它捕获系统内不会汇聚到单个点的圆形或旋转运动。
生态稳定性和李亚普诺夫函数:

稳定性通常通过李雅普诺夫稳定性来定义,是关于系统在扰动后如何恢复到稳定状态的。对于复杂的生态系统,确定一个李亚普诺夫函数是一项挑战,该函数在数学上确保全局稳定性。本文介绍了一种计算内在势能景观的方法,该势能作为李亚普诺夫函数,量化系统的稳定性。
内在潜力景观(

0
φ
0

):

在没有噪音的情况下,φ 0

是一个李亚普诺夫函数,沿着确定性轨迹单调递减至系统的全局最小值,体现了全局稳定性的优化原理。
SL模型分析:

具有势通量景观的斯塔弗-莱文 (SL) 模型揭示了稳定性和动态的定量标记。其中包括障碍高度、平均首次通过时间 (MFPT)、熵生产率 (EPR) 和平均通量,它们共同表征了森林-稀树草原生态系统的稳定性。
熵产率 (EPR) 和平均通量:

EPR 和 Fluxav 趋势一致,显示鞍节点分叉点附近发生显着变化。它们提供了对分岔的动力学和热力学起源的见解。
状态切换和不可逆性:

生态系统中状态转换的主要路径是由潜在景观和通量决定的,导致不可逆的动态。通量是这种不可逆性的根源。
随机强迫:

文本强调,即使像 Grassland 这样的状态在确定性模型中不稳定,它也可以在随机条件下变得准稳定。这种准稳定性是由景观通量理论预测的。
定量和物理标记:

该研究建议使用 EPR、Fluxav 和内在自由能作为检测分叉的标记。在时间序列数据中观察到的时间不可逆性可以推断分叉的物理标记,而频率统计和动力学时间的方差可以作为运动学标记。
该分析对于了解生态系统如何响应变化以及如何预测关键转变非常有价值,从而实现更好的管理和保护策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值