对于给定的一个长度为N的正整数数列 A[1~N],现要将其分成 M(M≤N)段,并要求每段连续,且每段和的最大值最小。关于最大值最小:
例如一数列4 2 4 5 1 要分成3段。将其如下分段:
[4 2][4 5][1]
第一段和为6,第2段和为9,第3段和为1,和最大值为9。
将其如下分段:
[4][2 4][5 1]
第一段和为4,第2段和为6,第3段和为6,和最大值为6。
并且无论如何分段,最大值不会小于6。
所以可以得到要将数列4 2 4 5 1 要分成3段,每段和的最大值最小为6。
输入
第1行包含两个正整数N,M。
第2行包含N个空格隔开的非负整数Ai,含义如题目所述。
输出
一个正整数,即每段和最大值最小为多少。
输入样例 1
5 3 4 2 4 5 1
输出样例 1
6
思路:答案最小是数组最大的数,最大是所有数的和,进行二分查找。
检查时,一个数一个数加起来,如果小于mid,可以继续加。如果大于mid,则前面的数为1组,当前的数为下组的第一个。注意,因为最后剩下的数肯定是单独成一组,cnt计数没算上。所以cnt计数开始从1开始。如果分组的个数比m小,说明mid有点大了,可以缩小一点。
代码:
#include<iostream>
using namespace std;
int a[100100];
int n,m;
bool check(int mid){
int cnt=1,sum=0;
for(int i=1;i<=n;i++){
if(sum+a[i]<=mid){
sum+=a[i];
}
else{
cnt++;
sum=a[i];
}
}
if(cnt<=m){
return true;
}
else{
return false;
}
}
int main(){
cin>>n>>m;
int left=0,right=0;
for(int i=1;i<=n;i++){
cin>>a[i];
right+=a[i];
left=max(left,a[i]);
}
int ans;
while(left<=right){
int mid=left+(right-left)/2;
if(check(mid)){
right=mid-1;
ans=mid;
}
else{
left=mid+1;
}
}
cout<<ans;
return 0;
}