机器学习/深度学习
机器学习/深度学习,包含Morvan学习笔记
SwordKii
这个作者很懒,什么都没留下…
展开
-
运行github上Faster-RCNN的笔记
运行demo.py之前,要运行train.py运行demo:问题:OSError: output\res101\voc_2007_trainval+voc_2012_trainval\default\res101_faster_rcnn_iter_110000.ckpt.meta not found.Did you download the proper networks from our...转载 2019-11-02 19:54:41 · 876 阅读 · 0 评论 -
tensorflow学习——(fashion_mnist数据集)基本分类first_1.py——2
1.导入模块,统一编码2.导入tensorflow和tf.keras3.导入辅助库4.导入fashion_mnist数据集5.探索数据6.数据预处理7.构建模型,设置网络层8.编译模型(损失函数、优化器、评价方式)9.训练模型原创 2019-09-11 10:05:31 · 384 阅读 · 0 评论 -
tensorflow学习——(fashion_mnist数据集)基本分类first_1.py——导入四个模块
此文参考:https://zhuanlan.zhihu.com/p/32756176#此处导入都是为了统一python 2和python 3from __future__ import absolute_import, division, print_function, unicode_literals(1)absolute_import模块from __future__ impo...原创 2019-09-11 09:44:18 · 212 阅读 · 0 评论 -
MorvanTest17_Dropout
sklearn.cross_validation被废弃,改为sklearn.model_selectionimport tensorflow as tffrom sklearn.datasets import load_digitsfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing i...原创 2019-09-15 10:45:34 · 268 阅读 · 0 评论 -
Morvan教程笔记2019.9.15——卷积神经网络CNN
卷积神经网络(Convolutional Neural Network)的一般结构从下到上tf.nn.max_pool( x , ksize , strides , padding)原文链接:https://blog.csdn.net/m0_37586991/article/details/84575325转载 2019-09-15 17:11:42 · 273 阅读 · 0 评论 -
MorvanTest19_Saver_数据的存取
import tensorflow as tfimport numpy as np将数据保存到指定路径的文件夹中(没有完全保存神经网络)# ## Save to file# # remembei to define the same dtype and shape when restore# W = tf.Variable([[1,2,3] , [3,4,5]] , dtype=tf....原创 2019-09-15 20:35:21 · 163 阅读 · 0 评论 -
Movan教程笔记2019.9.15——RNN
RNN(Recurrent Neural Network)循环神经网络LSTM(Long Short-Term Memory)长短期记忆一般的RNN容易忘记早期记忆(w<1梯度消失、w>1梯度爆炸)。LSTM多了三个控制器:主线、分线、控制器...原创 2019-09-18 10:42:49 · 146 阅读 · 0 评论 -
tensorflow学习——(imdb数据集)文本分类first_2.py
1.导入tensofow和kerasimport tensorflow as tffrom tensorflow import keras2.导入辅助库import numpy as npprint(tf.__version__)3.导入imdb数据集imdb=keras.datasets.imdb(train_data,train_labels),(test_data,tes...原创 2019-09-11 10:32:57 · 503 阅读 · 0 评论 -
Prompt中的简单命令
CTRL+Z或exit():退出python编译spyder:直接打开spyder原创 2019-09-11 19:31:51 · 1556 阅读 · 0 评论 -
jupyter和spyder中出现No module named "tensorflow"
有以下出错的可能性,按顺序排除1.先确保在prompt中已安装了tensorflow2.在base环境下,新建了tensorflow环境3.激活了tensorflow,(activate tensorflow)4.若是在prompt中可以直接通过python编译,导入tensorflow,说明tensorflow已安装,但如果不能在jupyter和spyder中导入,是因为没有将这两个装到...原创 2019-09-11 19:43:31 · 5743 阅读 · 4 评论 -
MorvanTest16——分类问题(mnist数据集-手写数字)
本程序中出现并解决的一些问题:1.下载mnist数据集:下载成功会显示Extracting MNIST_data\train-images-idx3-ubyte.gzExtracting MNIST_data\train-labels-idx1-ubyte.gzExtracting MNIST_data\t10k-images-idx3-ubyte.gzExtracting MNIST...原创 2019-09-14 16:58:53 · 235 阅读 · 0 评论 -
MorvanTest06-2019.9.14——tensorboard第2课
from __future__ import print_function , unicode_literals , absolute_import , divisionimport tensorflow as tfimport numpy as np定义添加层的函数def add_layer(inputs , in_size , out_size , n_layer , activat...原创 2019-09-14 11:41:43 · 116 阅读 · 0 评论 -
Morvan教程笔记2019.9.13——tensorboard第1课
第6例 tensorboard(基于第5例代码)Morvan的代码可在其GitHub上查看:重点给每个模块取名字,例如:with tf.name_scope('inputs') xs = tf.placeholder( tf.float32 , [ None , 1 ] , name='x_input') ys = tf.placeholder( tf.float32 ,...原创 2019-09-13 20:27:38 · 170 阅读 · 0 评论 -
MorvanTest06——tensorboard第1课
from __future__ import print_function , unicode_literals , absolute_import , divisionimport tensorflow as tf定义添加层的函数def add_layer(inputs , in_size , out_size , activation_function=None ): with...原创 2019-09-13 20:25:07 · 137 阅读 · 0 评论 -
Morvan教程笔记2019.9.13——线性函数的神经网络&matplotlib
第5例添加神经层的函数import tensorflow as tfimport numpy as npdef add_layer(inputs, in_size , out_size , activation_function = None): Weights = tf.Variable(tf.random_normal([in_size , out_size])) b...原创 2019-09-13 17:26:53 · 160 阅读 · 0 评论 -
Morvan教程笔记2019.9.12——初始化&会话&变量&placeholder&activation
第1例1.若代码中存在变量定义,则要进行初始化:init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)2.输出的变量要放在run()中:print(step,sess.run(Weights),sess.run(biases))...原创 2019-09-13 09:55:54 · 169 阅读 · 0 评论 -
tensorflow学习——keras高级API——序列模型Sequential
Tensorflow官网Keras是一个用于构建和训练深度学习模型的高阶API。它可用于快速设计原型,高级研究和生产,具有以下三个优势:方便用户使用Keras具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。模块化和可组合将可配置的构造快连接在一起就可以构建Keras模型,并且几乎不受限制。易于扩展可以自关系编写定义构造块以表达新的研究创...原创 2019-09-12 14:08:01 · 2125 阅读 · 0 评论 -
tensorflow学习——keras高级API——层中的单元个数
序列模型在Keras中,可以通过组合层来构建模型。模型通常是由层构成的图。最常见的模型类型是堆层:tf.keras.Sequential模型。构建一个简单的全连接的网络。model = tf.keras.Sequential()# Adds a densely-connected layer with 64 units to the model:model.add(layers.Dens...转载 2019-09-12 12:44:30 · 702 阅读 · 0 评论 -
Morvan教程笔记2019.9.14——过拟合
过拟合简单的说就是机器学习的模型过于自信,强行满足了太多训练数据,在加入其他测试数据后,误差变大。解决过拟合的方法方法1:增加数据量方法2:运用正规化(正则化):(1)L1,L2 … regularizztion:适用于大多数机器学习和神经网络的方法(2)Dropout regularization专门用于神经网络的方法此方法每次训练随机忽略一部分神经元,减小模型对于某些神经元的依...原创 2019-09-15 10:24:34 · 165 阅读 · 0 评论